Skip to main content
Log in

Preparation and Evaluation of a Ferrocenediamide Bridge bis(β-Cyclodextrin)-Bonded Chiral Stationary Phase for HPLC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Ferrocene is a stable metallocene complex with aromatic high-electron π-conjugated system and sandwich structures. We first prepared and characterized a novel ferrocenediamide bridged bis(β-cyclodextrin) chiral stationary phase (FeCDP) to explore its chiral separation function. Its HPLC performance was systematically evaluated by basic, acidic, amphoteric and neutral chiral probes, including triazoles, profens, flavanones, amino acids and β-blocker drugs in reversed-phase and polar organic modes, respectively. The results showed that FeCDP successfully resolved 44 kinds of tested analytes (Rs = 0.66–4.38), of which 36 were completely separated (Rs ≥ 1.5). The best resolutions of different types, such as hexaconazole, ketoprofen, 3'-hydroxyflavanone, phenylalanine and arotinolol on FeCDP were reached at 3.06, 1.90, 4.38, 1.89 and 2.12 in a short time, respectively. Especially, FeCDP could completely resolve imazalil (Rs = 1.97), ketoprofen (Rs = 1.90), dansylated arginine (Dns-Arg, Rs = 1.50), pindolol (Rs = 1.42), bevantolol (Rs = 1.41), which were very difficult to be resolved on the conventional CDCSPs. However, under optimal condition, the ordinary CDCSP could only separate 19 analytes with low resolutions (Rs = 0.29–1.27). Compared with the reported similar stationary phases, the HPLC performance of FeCDP was also further improved. Based on the above comparison results, the satisfactory enantioselectivity of FeCDP may be mainly due to the fact that the “pseudo-cavity” composed of two CDs and a ferrocene diamide, could provide cooperative inclusion for analytes. Meanwhile, the large π-conjugated ferrocenediamide bridging group could also provide hydrogen bonding, π–π stacking, dipole–dipole and hydrophobic interactions, which may promote the chiral recognition effect of FeCDP. Bridge CD-CSP was a versatile chiral separation material in drugs analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agranat I, Caner H, Caldwell A (2002) Putting chirality to work: The strategy of chiral switches. Nat Rev Drug Discovery 1:753–768. https://doi.org/10.1038/nrd915

    Article  CAS  PubMed  Google Scholar 

  2. Cui X, Zhong Q, Zhang X, Li H, Wang X, Luo F, Cheng Y, Chen Z (2019) Progress on analysis of chiral pesticide enantiomers residues in agricultural products based on chromatographic method. J Instrum Anal 38:249–262

    Google Scholar 

  3. Zhou Q, Yu LS, Zeng S (2014) Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction. Drug Metab Rev 46:283–290. https://doi.org/10.3109/03602532.2014.887094

    Article  CAS  PubMed  Google Scholar 

  4. Muller MD, Poiger T, Buser HR (2001) Isolation and identification of the metolachlor stereoisomers using high-performance liquid chromatography, polarimetric measurements, and enantioselective gas chromatography. J Agric Food Chem 49:42–49. https://doi.org/10.1021/jf000857f

    Article  CAS  PubMed  Google Scholar 

  5. Xiao Y, Ng SC, Tan TTY, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68. https://doi.org/10.1016/j.chroma.2012.08.049

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong DW, Demond W (1984) Cyclodextrin bonded phases For the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromatogr Sci 22:411–415. https://doi.org/10.1093/chromsci/22.9.411

    Article  CAS  Google Scholar 

  7. Armstrong DW, Chang CD, Lee SH (1991) (R)- and (S)-Naphthylethylcarbamate-substituted beta-cyclodextrin bonded stationary phases for the reversed-phase liquid chromatographic separation of enantiomers. J Chromatogr 539:83–90. https://doi.org/10.1016/s0021-9673(01)95362-2

    Article  CAS  Google Scholar 

  8. Han XX, Yao TL, Liu Y, Larock RC, Armstrong DW (2005) Separation of chiral furan derivatives by liquid chromatography using cyclodextrin-based chiral stationary phases. J Chromatogr A 1063:111–120. https://doi.org/10.1016/j.chroma.2004.11.066

    Article  CAS  PubMed  Google Scholar 

  9. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P, Wang C, Armstrong DW (2006) Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J Chromatogr A 1115:19–45. https://doi.org/10.1016/j.chroma.2006.02.065

    Article  CAS  PubMed  Google Scholar 

  10. Lai X, Tang W, Ng SC (2011) Novel β-cyclodextrin chiral stationary phases with different length spacers for normal-phase high performance liquid chromatography enantioseparation. J Chromatogr A 1218:3496–3501. https://doi.org/10.1016/j.chroma.2011.03.071

    Article  CAS  PubMed  Google Scholar 

  11. Lin C, Liu W, Fan J, Wang Y, Zheng S, Lin R, Zhang H, Zhang W (2013) Synthesis of a novel cyclodextrin-derived chiral stationary phase with multiple urea linkages and enantioseparation toward chiral osmabenzene complex. J Chromatogr A 1283:68–74. https://doi.org/10.1016/j.chroma.2013.01.087

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YP, Guo ZM, Ye JX, Xu Q, Liang XM, Lei AW (2008) Preparation of novel beta-cyclodextrin chiral stationary phase based on click chemistry. J Chromatogr A 1191:188–192. https://doi.org/10.1016/j.chroma.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Lu X, Wang Y, Tan TTY (2014) Surface-up constructed tandem-inverted bilayer cyclodextrins for enhanced enantioseparation and adsorption. J Chromatogr A 1343:101–108. https://doi.org/10.1016/j.chroma.2014.03.061

    Article  CAS  PubMed  Google Scholar 

  14. Zhou J, Yang B, Tang J, Tang W (2016) Cationic cyclodextrin clicked chiral stationary phase for versatile enantioseparations in high-performance liquid chromatography. J Chromatogr A 1467:169–177. https://doi.org/10.1016/j.chroma.2016.06.030

    Article  CAS  PubMed  Google Scholar 

  15. Li YJ, Lin XT, Qin SL, Gao LD, Tang YM, Liu SR, Wang YY (2020) beta-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and beta-blockers by capillary electrochromato-graphy. Chirality 32:1008–1019. https://doi.org/10.1002/chir.23227

    Article  CAS  PubMed  Google Scholar 

  16. Breslow R, Greenspoon N, Guo T, Zarzycki R (1989) Very strong binding of appropriate substrates by cyclodextrin dimers. J Am Chem Soc 111:8296–8297. https://doi.org/10.1021/ja00203a050

    Article  CAS  Google Scholar 

  17. Breslow R (1995) biomimetic chemistry and artificial enzymes - catalysis by design. Accounts Chem Res 28:146–153. https://doi.org/10.1021/ar00051a008

    Article  CAS  Google Scholar 

  18. Liu Y, Kang S, Chen Y, Yang YW, Huskens J (2006) Photo-induced switchable binding behavior of bridged bis(beta-cyclodextrin) with an azobenzene dicarboxylate linker. J Incl Phenom Macrocycl Chem 56:197–201. https://doi.org/10.1007/s10847-006-9083-4

    Article  CAS  Google Scholar 

  19. Ai P, Han L, Zi M, Meng L, Zi FT, Yuan LM (2006) Bridge-linked beta-cyclodextrin stationary phases in high performance liquid chromatography. Chin J Anal Chem 34:1459–1462

    CAS  Google Scholar 

  20. Zhou R, Li L, Cheng B, Nie G, Zhang H (2014) Preparation and evaluation of a novel bis(beta-cyclodextrin)-bonded SBA-15 chiral stationary phase for HPLC. Acta Chim Sin 72:720–730. https://doi.org/10.6023/a14040274

    Article  CAS  Google Scholar 

  21. Shuang Y, Zhang T, Li L (2020) Preparation of a stilbene diamido-bridged bis(beta-cyclodextrin)-bonded chiral stationary phase for enantioseparations of drugs and pesticides by high performance liquid chromatography. J Chromatogr A 1614:460702. https://doi.org/10.1016/j.chroma.2019.460702

    Article  CAS  PubMed  Google Scholar 

  22. Hussein MA, Asiri AM (2012) Organometallic ferrocene- and phosphorus-containing polymers: synthesis and characterization. Des Monom and Polym 15:207–251. https://doi.org/10.1163/156855511x615650

    Article  CAS  Google Scholar 

  23. Li HJ, Song ZF, Yu J, Li Y, Feng L, Huai QY (2014) Synthesis and performance of ferrocene-bonded chiral stationary phase for RP-HPLC. Asian J Chem 26:4465–4468. https://doi.org/10.14233/ajchem.2014.16975

    Article  CAS  Google Scholar 

  24. Qiao L, Zhou X, Li X, Du W, Yu A, Zhang S, Wu Y (2017) Synthesis and performance of chiral ferrocene modified silica gel for mixed-mode chromatography. Talanta 163:94–101. https://doi.org/10.1016/j.talanta.2016.10.090

    Article  CAS  PubMed  Google Scholar 

  25. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  26. Shuang Y, Liao Y, Wang H, Wang Y, Li L (2020) Preparation and evaluation of a triazole-bridged bis(beta-cyclodextrin)-bonded chiral stationary phase for HPLC. Chirality 32:168–184. https://doi.org/10.1002/chir.23147

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Cheng B, Zhou R, Cao Z, Zeng C, Li L (2017) Preparation and evaluation of a novel N-benzyl-phenethylamino-beta-cyclodextrin-bonded chiral stationary phase for HPLC. Talanta 174:179–191. https://doi.org/10.1016/j.talanta.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  28. Wang YD, Wahab MF, Breitbach ZS, Armstrong DW (2016) Carboxylated cyclofructan 6 as a hydrolytically stable high efficiency stationary phase for hydrophilic interaction liquid chromatography and mixed mode separations. Anal Methods 8:6038–6045. https://doi.org/10.1039/c6ay01246a

    Article  CAS  Google Scholar 

  29. Tang S, Wang F, Meng X, Zhang Y (2021) Research progress in chromatographic separation of triazole fungicides containing two chiral centers. J Pestic Sci 23:617–627

    Google Scholar 

  30. Bi C, Zhao E, Liu Y, Qiu J, Zhou Z (2006) Direct optical resolution of chiral pesticides by HPLC on emamectin CSP under normal phase conditions. J Liq Chromatogr Relat Technol 29:1601–1607. https://doi.org/10.1080/10826070600678324

    Article  CAS  Google Scholar 

  31. Bartzatt R (2001) Fluorescent labeling of drugs and simple organic compounds containing amine functional groups, utilizing dansyl chloride in Na2CO3 buffer. J Pharmacol Toxicol Methods 45:247–253. https://doi.org/10.1016/s1056-8719(01)00157-5

    Article  CAS  PubMed  Google Scholar 

  32. Mustonen K, Niemi A, Raekallio M, Heinonen M, Peltoniemi OAT, Palviainen M, Siven M, Peltoniemi M, Vainio O (2012) Enantiospecific ketoprofen concentrations in plasma after oral and intramuscular administration in growing pigs. Acta Vet Scand. https://doi.org/10.1186/1751-0147-54-55

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thamarai Chelvi SK, Yong EL, Gong Y (2008) Preparation and evaluation of calix 4 arene-capped beta-cyclodextrin-bonded silica particles as chiral stationary phase for high-performance liquid chromatography. J chromatogr A 1203:54–58. https://doi.org/10.1016/j.chroma.2008.07.021

    Article  CAS  PubMed  Google Scholar 

  34. Jiang W, Fang B (2020) Synthesizing chiral drug intermediates by biocatalysis. Appl Biochem Biotechnol 192:146–179. https://doi.org/10.1007/s12010-020-03272-3

    Article  CAS  PubMed  Google Scholar 

  35. Tan B, Negahban A, McDonald T, Zhang Y, Holliman C (2012) Utilization of hydrophilic-interaction LC to minimize matrix effects caused by phospholipids. Bioanalysis 4:2049–2058. https://doi.org/10.4155/bio.12.162

    Article  CAS  PubMed  Google Scholar 

  36. Zhang DD, Li FM, Hyun MH (2005) Chiral separation of beta(2)-blockers on pirkle-type chiral stationary phases. J Liq Chromatogr Relat Technol 28:187–198. https://doi.org/10.1081/jlc-200041279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 31860469, 21165012), the Science and Technology Innovation Platform Project of Jiangxi Province (No. 20192BCD40001), respectively.

Author information

Authors and Affiliations

Authors

Contributions

HZ: writing-original draft, methodology. QZ: data curation visualization, investigation. ZH: visualization, investigation. LL: Supervision, Resources, Writing-review & editing, Funding acquisition.

Corresponding author

Correspondence to Laisheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1050 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Zeng, Q., Huang, Z. et al. Preparation and Evaluation of a Ferrocenediamide Bridge bis(β-Cyclodextrin)-Bonded Chiral Stationary Phase for HPLC. Chromatographia 85, 589–603 (2022). https://doi.org/10.1007/s10337-022-04171-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04171-x

Keywords

Navigation