Skip to main content
Log in

TLC–Densitometry and UHPLC Methods for Simultaneous Determination of Amprolium HCl, Ethopabate, and Sulfaquinoxaline-Na in Their New Combined Dosage Form

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Herein we report two sensitive and accurate UHPLC and TLC-densitometric methods for the simultaneous determination of amprolium HCl, ethopabate, and sulfaquinoxaline-Na. A UHPLC isocratic elution method was adopted with a mobile phase of sodium 1-hexanesulfonate aqueous solution–methanol–acetonitrile in a ratio of (1500:400:100, v/v/v) adjusted to a pH of 5.1 with phosphoric acid. Results showed R2 = 0.9999 over concentration ranges of 0.5–25.0 μg mL−1, 1.0–30.0 μg mL−1, and 1.0–30.0 μg mL−1 for the three drugs, respectively. The accuracy was 100.58% ± 0.52 for amprolium HCl and 98.78% ± 0.54 and 100.14% ± 0.11 for ethopabate and sulfaquinoxaline-Na. Additionally, a TLC-densitometric method was adopted to separate the three cited drugs with a developing system of chloroform:methanol:33% ammonia solution (6:4:0.5 v/v/v) and UV detection at 263 nm. Results showed Rf values of 0.34, 0.65, and 0.95 for amprolium HCl, sulfaquinoxaline-Na, and ethopabate, respectively. The linearity range was 1.0–30.0 μg/band, 0.5–20.0 μg/band, and 1.0–25.0 μg/band for amprolium HCl, ethopabate, and sulfaquinoxaline-Na, respectively. The proposed TLC-densitometric method was utilized for the simultaneous determination of the three drugs in spiked biological matrices with acceptable recoveries. The proposed methods were applied for simultaneous quantitation of three drugs in veterinary formulation and the results were in accordance with those obtained by the reported methods. In conclusion, the two suggested methods were sensitive and accurate for the simultaneous quantitation of the three drugs in both their dosage forms and in biological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Girardi C, Odore R (2008) Pharmacological treatments and risks for the food chain. Vet Res Commun 32(Suppl 1):S11–S18. https://doi.org/10.1007/s11259-008-9083-5

    Article  PubMed  Google Scholar 

  2. Capleton AC, Courage C, Rumsby P et al (2006) Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile. Toxicol Lett 163:213–223. https://doi.org/10.1016/j.toxlet.2005.10.023

    Article  CAS  PubMed  Google Scholar 

  3. Gao F, Yin C-X, Huo F-J, Yang P (2005) Ethopabate. Acta Crystallogr E Struct Rep Online 61:o3870–o3871. https://doi.org/10.1107/S1600536805034082

    Article  CAS  Google Scholar 

  4. Clarke L, Fodey TL, Crooks SRH et al (2014) A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci 97:358–374. https://doi.org/10.1016/j.meatsci.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Bedaso K (2016) Comparative study on the efficacy of amprolium and sulfadimidine in coccidia infected chickens in Debre-Zeit agricultural research center poultry farm, Bishoftu, Ethiopia. SOJVS 2:1–5. https://doi.org/10.15226/2381-2907/2/2/00121

    Article  Google Scholar 

  6. Fatoba AJ, Adeleke MA (2018) Diagnosis and control of chicken coccidiosis: a recent update. J Parasit Dis 42:483–493. https://doi.org/10.1007/s12639-018-1048-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hussein LA, Magdy N, Abbas MM (2015) Five different spectrophotometric methods for determination of Amprolium hydrochloride and ethopabate binary mixture. Spectrochim Acta A Mol Biomol Spectrosc 138:395–405. https://doi.org/10.1016/j.saa.2014.11.073

    Article  CAS  PubMed  Google Scholar 

  8. Abdelaziz S, Abdel Razeq S, Ahmed N (2021) Smart UV-Spectrophotometric methods for the simultaneous determination of amprolium-HCl, ethopabate and sulfaquinoxaline-Na in combined dosage forms. Azhar Int J Pharmaceutical Med Sci. https://doi.org/10.21608/aijpms.2021.62019.1046

    Article  Google Scholar 

  9. Fink DW, deFontenay G, Bonnefille P et al (2004) Further studies on the spectrophotometric determination of amprolium. J AOAC Int 87:677–680

    CAS  PubMed  Google Scholar 

  10. Catelani TA, Tóth IV, Lima JLFC et al (2014) A simple and rapid screening method for sulfonamides in honey using a flow injection system coupled to a liquid waveguide capillary cell. Talanta 121:281–287. https://doi.org/10.1016/j.talanta.2013.12.034

    Article  CAS  PubMed  Google Scholar 

  11. Alattar A (2018) Native spectrofluorimetric determination of amprolium in bulk and pharmaceutical formulation. Innoriginal: Int J Sci 5(3):42–45

    Google Scholar 

  12. Nasr JJ, Shalan S (2014) Spectrofluorimetric analysis of ethopabate in veterinary formulations with application to residue determination in chicken muscles and liver. Luminescence 29:1188–1193. https://doi.org/10.1002/bio.2683

    Article  CAS  PubMed  Google Scholar 

  13. El-Kosasy AM, Hussein LA, Magdy N, Abbas MM (2015) Sensitive spectrofluorimetric methods for determination of ethopabate and amprolium hydrochloride in chicken plasma and their residues in food samples. Spectrochim Acta A Mol Biomol Spectrosc 150:430–439. https://doi.org/10.1016/j.saa.2015.05.082

    Article  CAS  PubMed  Google Scholar 

  14. Natalia Z, Zholt K, Iryna A et al. (2019) Potentiometric sensor for determination of amprolium in pharmaceutical formulation

  15. Basha MA, Abd El-Rahman MK, Bebawy LI, Salem MY (2017) Novel potentiometric application for the determination of amprolium HCl in its single and combined dosage form and in chicken liver. Chin Chem Lett 28:612–618. https://doi.org/10.1016/j.cclet.2016.11.012

    Article  CAS  Google Scholar 

  16. Basha MA, Abd El-Rahman MK, Bebawy LI, Moustafa AA (2019) Validated TLC stability-indicating methods for the quantitative determination of some veterinary drugs. Microchem J 146:157–163. https://doi.org/10.1016/j.microc.2018.12.057

    Article  CAS  Google Scholar 

  17. El-Kosasy AM, Lobna AH, Magdy N, Mahmoud MA (2016) Validated TLC–densitometric method for determination of amprolium hydrochloride and ethopabate in veterinary preparation. Anal Chem: Indian J 16(13):1–11

    Google Scholar 

  18. Thomas MH, Soroka KE, Thomas SH (1983) Quantitative thin layer chromatographic multi-sulfonamide screening procedure. J Assoc Off Anal Chem 66:881–883

    CAS  PubMed  Google Scholar 

  19. Goessens T, Baere SD, Troyer ND et al (2020) Highly sensitive multi-residue analysis of veterinary drugs including coccidiostats and anthelmintics in pond water using UHPLC-MS/MS: application to freshwater ponds in Flanders, Belgium. Env Sci Process Impacts 22:2117–2131. https://doi.org/10.1039/d0em00215a

    Article  CAS  Google Scholar 

  20. Baker MM, El-Kafrawy DS, Abdel-Khalek MM, Belal TS (2019) Comprehensive stability-indicating high-performance liquid chromatography coupled with diode array detection method for simultaneous determination of amprolium hydrochloride and ethopabate in powder dosage form for veterinary use. J Sep Sci 42:3340–3351. https://doi.org/10.1002/jssc.201900440

    Article  CAS  PubMed  Google Scholar 

  21. Ali MM, Ahmed MAA, Shinger MI (2017) Development and validation of RP-HPLC method for simultaneous determination of amprolium hcl and ethopabate in their combination drug. Chem Biomol Eng 2(1):51–56

    Google Scholar 

  22. Mantri AP, Rubeena MS, Nischal K, Shiva K (2015) Simultaneous estimation of sulfaquinoxaline sodium and amproliumhydrochloride by RP- HPLC. IJPSR 6:1097–1100

    CAS  Google Scholar 

  23. Ghanem M, Abu-Lafi S (2013) Validation of a stability-indicating assay of amprolium hydrochloride in water soluble powder formulation using hydrophilic interaction liquid chromatography. J Appl Pharm Sci 3(10):51–58. https://doi.org/10.7324/JAPS.2013.31009

    Article  Google Scholar 

  24. Martínez-Villalba A, Núñez O, Moyano E, Galceran MT (2013) Field amplified sample injection-capillary zone electrophoresis for the analysis of amprolium in eggs. Electrophoresis 34:870–876. https://doi.org/10.1002/elps.201200579

    Article  CAS  PubMed  Google Scholar 

  25. Su HX, Tan HR, Shen HQ, Tian CQ (2013) Simultaneous separation and determination of four anticoccidial drugs in soil by high performance capillary electrophoresis. J Instrum Anal 2:5–10

    Google Scholar 

  26. Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2:3. https://doi.org/10.1186/1860-5397-2-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical eco-scale for assessing the greenness of analytical procedures. TrAC, Trends Anal Chem 37:61–72. https://doi.org/10.1016/j.trac.2012.03.013

    Article  CAS  Google Scholar 

  28. Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta 181:204–209. https://doi.org/10.1016/j.talanta.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  29. Gaber Y, Törnvall U, Kumar MA et al (2011) HPLC-EAT (environmental assessment tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem 13:2021. https://doi.org/10.1039/c0gc00667j

    Article  CAS  Google Scholar 

  30. Mercer SM, Andraos J, Jessop PG (2012) Choosing the greenest synthesis: a multivariate metric green chemistry exercise. J Chem Educ 89:215–220. https://doi.org/10.1021/ed200249v

    Article  CAS  Google Scholar 

  31. Tobiszewski M, Marć M, Gałuszka A, Namieśnik J (2015) Green chemistry metrics with special reference to green analytical chemistry. Molecules 20:10928–10946. https://doi.org/10.3390/molecules200610928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declared no funding was provided for the work published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin S. Ahmed.

Ethics declarations

Conflict of Interest

The author declares that for this manuscript, no funds, grants, or other support was received. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 639 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razeq, S.A.A., Aziz, S.E.A. & Ahmed, N.S. TLC–Densitometry and UHPLC Methods for Simultaneous Determination of Amprolium HCl, Ethopabate, and Sulfaquinoxaline-Na in Their New Combined Dosage Form. Chromatographia 85, 563–574 (2022). https://doi.org/10.1007/s10337-022-04163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04163-x

Keywords

Navigation