Skip to main content
Log in

One-Step Solvothermal Synthesis of Sub-2-µm Sea Urchin-Like TiO2 Microspheres for High-Performance Liquid Chromatography Stationary Phase

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Sub-2-µm sea-urchin-like TiO2 microspheres were prepared through the one-step solvothermal method. Results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that there are a lot of nanorods coming out from the center of the TiO2 microsphere, making it look like a sea urchin. The morphology and structure of these microspheres are very suitable for chromatographic packing. During the separation of inorganic anions on this new stationary phase, the retention mechanism is electrostatic interaction, and the pH of the mobile phase plays an important role in retention behaviors. With this new stationary phase for separation of organic anions and nucleobases, Lewis acid–base interaction is more outstanding, which can cause peak broadening and tail for larger conjugated structure compounds. The separation of aromatic hydrocarbons on this new stationary phase demonstrates that Lewis acid–base interaction has a favorable influence on the separation of electron-rich aromatic hydrocarbons under normal phase chromatographic conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPLC:

High-performance liquid chromatography

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

XRD:

X-ray diffractometer

References

  1. Hassani SAM (2020) Simultaneous determination of active ingredients in multicomponent common over the counter tablets in the present of parabens and 4-aminophenol by HPLC. Chromatographia 83:791–805. https://doi.org/10.1007/s10337-020-03886-z

    Article  CAS  Google Scholar 

  2. Xia HJ, Wang J, Chen G, Liu JW, Wan GP, Bai Q (2019) One-pot synthesis of SiO2@SiO2 core-shell microspheres with controllable mesopore size as a new stationary phase for fast HPLC separation of alkyl benzenes and -agonists. Microchim Acta 186:125. https://doi.org/10.1007/s00604-019-3229-8

    Article  CAS  Google Scholar 

  3. Perrenoud AGG, Hamman C, Goel M, Veuthey JL, Guillarme D, Fekete S (2013) Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. J Chromatogr A 1314:288–297. https://doi.org/10.1016/j.chroma.2013.09.039

    Article  CAS  Google Scholar 

  4. Fekete S, Kohler I, Rudaz S, Guillarme D (2014) Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J Pharm Biomed Anal 87:105–119. https://doi.org/10.1016/j.jpba.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  5. Borges EM, Rostagno MA, Meireles MAA (2014) Sub-2μm fully porous and partially porous (core-shell) stationary phases for reversed phase liquid chromatography. RSC Adv 4:22875–22887. https://doi.org/10.1039/c3ra45418e

    Article  CAS  Google Scholar 

  6. Wagner K, Racaityte K, Unger KK, Miliotis T, Edholm LE, Bischoff R, Marko-Varga G (2000) Protein mapping by two-dimensional high performance liquid chromatography. J Chromatogr A 893:293–305. https://doi.org/10.1016/s0021-9673(00)00736-6

    Article  CAS  PubMed  Google Scholar 

  7. DeStefano JJ, Langlois TJ, Kirkland JJ (2008) Characteristics of superficially-porous silica particles for fast HPLC: some performance comparisons with sub-2-μm particles. J Chromatogr Sci 46:254–260. https://doi.org/10.1093/chromsci/46.3.254

    Article  CAS  PubMed  Google Scholar 

  8. Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G (2010) Performance of columns packed with the new shell particles, Kinetex-C-18. J Chromatogr A 1217:1589–1603. https://doi.org/10.1016/j.chroma.2009.12.079

    Article  CAS  PubMed  Google Scholar 

  9. Chester TL (2013) Recent developments in high-performance liquid chromatography stationary phases. Anal Chem 85:579–589. https://doi.org/10.1021/ac303180y

    Article  CAS  PubMed  Google Scholar 

  10. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Ed Engl 49:9652–9656. https://doi.org/10.1002/anie.201003451

    Article  CAS  PubMed  Google Scholar 

  11. Min Y, Jiang B, Wu C, Xia S, Zhang X, Liang Z, Zhang L, Zhang Y (2014) 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. J Chromatogr A 1356:148–156. https://doi.org/10.1016/j.chroma.2014.06.049

    Article  CAS  PubMed  Google Scholar 

  12. Qu Q, Min Y, Zhang L, Xu Q, Yin Y (2015) Silica microspheres with fibrous shells: synthesis and application in HPLC. Anal Chem 87:9631–9638. https://doi.org/10.1021/acs.analchem.5b02511

    Article  CAS  PubMed  Google Scholar 

  13. Boercker JE, Enache-Pommer E, Aydil ES (2008) Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19:10. https://doi.org/10.1088/0957-4484/19/9/095604

    Article  CAS  Google Scholar 

  14. Park KS, Min KM, Jin YH, Seo SD, Lee GH, Shim HW, Kim DW (2014) Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon. J Mater Chem 22:15981. https://doi.org/10.1039/c2jm32378h

    Article  CAS  Google Scholar 

  15. Zhou Y, Wu H, Zhong X, Liu C (2014) Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route. J Nanopart Res. https://doi.org/10.1007/s11051-014-2466-3

    Article  Google Scholar 

  16. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943. https://doi.org/10.1021/ac0498617

    Article  CAS  PubMed  Google Scholar 

  17. Winkler J, Marme S (2000) Titania as a sorbent in normal-phase liquid chromatography. J Chromatogr A 888:51–62. https://doi.org/10.1016/s0021-9673(00)00489-1

    Article  CAS  PubMed  Google Scholar 

  18. Yan J, Li X, Yu L, Jin Y, Zhang X, Xue X, Ke Y, Liang X (2010) Selective enrichment of glycopeptides/phosphopeptides using porous titania microspheres. Chem Commun 46:5488–5490. https://doi.org/10.1039/c000094a

    Article  CAS  Google Scholar 

  19. Zhou T, Lucy CA (2008) Hydrophilic interaction chromatography of nucleotides and their pathway intermediates on titania. J Chromatogr A 1187:87–93. https://doi.org/10.1016/j.chroma.2008.02.027

    Article  CAS  PubMed  Google Scholar 

  20. Shen L, Zhang X, Li H, Yuan C, Cao G (2011) Design and tailoring of a three-dimensional TiO2-graphene-carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett 2:3096–3101. https://doi.org/10.1021/jz201456p

    Article  CAS  Google Scholar 

  21. Ye M, Liu HY, Lin C, Lin Z (2013) Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9:312–321. https://doi.org/10.1002/smll.201201590

    Article  CAS  PubMed  Google Scholar 

  22. Tian G, Chen Y, Zhou W, Pan K, Tian C, Huang X-R, Fu H (2011) 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property. CrystEngComm 13:2994–3000. https://doi.org/10.1039/c0ce00851f

    Article  CAS  Google Scholar 

  23. Hu YL, Feng YQ, Da SL (2006) Chromatographic evaluation of alkylphosphonic acid-modified ceria-zirconia in reversed-phase Hplc. J Liq Chromatogr Related Technol 24:957–971. https://doi.org/10.1081/jlc-100108541

    Article  CAS  Google Scholar 

  24. Zhou Y, Wang Y, Li M, Li X, Yi Q, Deng P, Wu H (2015) Solvothermal synthesis and high optical performance of three-dimensional sea-urchin-like TiO2. Mater Res Bull 66:115–122. https://doi.org/10.1016/j.materresbull.2015.02.033

    Article  CAS  Google Scholar 

  25. Blackwell JA, Carr PW (1992) Development of an eluotropic series for the chromatography of lewis-bases on zirconium-oxide. Anal Chem 64:863–873. https://doi.org/10.1021/ac00032a008

    Article  CAS  PubMed  Google Scholar 

  26. Tani K, Sumizawa T, Watanabe M, Tachibana M, Koizumi H, Kiba T (2002) Evaluation of titania as an ion-exchanger and as a ligand-exchanger in HPLC. Chromatographia 55:33–37

    Article  CAS  Google Scholar 

  27. Hadjiivanov KI, Klissurski DG (1996) Surface chemistry of titania (anatase) and titania-supported catalysts. Chem Soc Rev 25:61. https://doi.org/10.1039/cs9962500061

    Article  CAS  Google Scholar 

  28. Grun M, Kurganov AA, Schacht S, Schuth F, Unger KK (1996) Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J Chromatogr A 740:1–9. https://doi.org/10.1016/0021-9673(96)00205-1

    Article  Google Scholar 

  29. Hadjiivanov KI, Klissurski DG (1996) Surface chemistry of titania (anatase) and titania-supported catalysts. Chem Soc Rev 25(1):61. https://doi.org/10.1039/cs9962500061

    Article  CAS  Google Scholar 

  30. Kriz J, Adamcova E, Knox JH, Hora J (1994) Characterization of adsorbents by high-performance liquid-chromatography using aromatic-hydrocarbons—porous graphite and its comparison with silica-gel, alumina, octadecylsilica and phenylsilica. J Chromatogr A 663:151–161. https://doi.org/10.1016/0021-9673(94)85241-3

    Article  CAS  Google Scholar 

  31. Ageev AN, Kiselev AV, Yashin YI (1980) Regularities in the retention of isomeric aromatic-hydrocarbons in liquid-chromatography. Part I. analysis of polymethyl benzenes and mono-alkyl benzenes and polynuclear aromatic-hydrocarbons on hydroxylated silica-gel. Chromatographia 13:669–672. https://doi.org/10.1007/bf02303435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015344), the CAS “Light of West China” Program, the Health research fund of Gansu Province (GSWSKY-2014-06), and the Inner Fund of Gansu Provincial Hospital (16GSSY5-1) are gratefully acknowledged.

Funding

This study was funded by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015344), the CAS “Light of West China” Program, the Health research fund of Gansu Province (GSWSKY-2014-06), and the Inner Fund of Gansu Provincial Hospital (16GSSY5-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Guo or Xiaojing Liang.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2506 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Tang, H., Wang, S. et al. One-Step Solvothermal Synthesis of Sub-2-µm Sea Urchin-Like TiO2 Microspheres for High-Performance Liquid Chromatography Stationary Phase. Chromatographia 85, 365–371 (2022). https://doi.org/10.1007/s10337-022-04140-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04140-4

Keywords

Navigation