Skip to main content
Log in

A Dual Functional-Group Derivatization Liquid Chromatography–Tandem Mass Spectrometry Method: Application for Quantification of Human Insulin

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Recently, we developed a sensitive and accurate quantification method for short-chain peptides using dual functional-group derivatization. Sensitive and accurate quantification was achieved in our study by separating the sensitivity-enhancement and isotope-labeling derivatization reactions. In this study, we applied the abovementioned method to quantify human insulin in serum using enzymatic digestion. The amino groups in human insulin were reductively alkylated with acetaldehyde or acetaldehyde-d4 to afford N-alkylated products with different masses. This process is simple, quick, produces high yields, and helps in the accurate comparative analysis of mass-differentiated human insulin. After mixing the N-alkylated products with different masses, the obtained mixtures were digested using Glu-C. The carboxyl groups were then derivatized with 1-(2-pyrimidinyl)piperazine to increase sensitivity and analyzed using liquid chromatography–tandem mass spectrometry. Excellent accuracy (97.2–107.5%) and precision (RSD, 2.2–10.6%) were achieved using this method. Furthermore, the quantification values obtained agreed with the quantification values obtained using isotope dilution mass spectrometry in a previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352. https://doi.org/10.1038/nri2747

    Article  CAS  PubMed  Google Scholar 

  2. Wolfe RR (2005) Regulation of skeletal muscle protein metabolism in catabolic states. Curr Opin Clin Nutr Metab Care 8:61–65. https://doi.org/10.1097/00075197-200501000-00009

    Article  CAS  PubMed  Google Scholar 

  3. Hopley CJ, Stokes P, Webb KS, Baynham M (2004) The analysis of thyroxine in human serum by an ‘exact matching’ isotope dilution method with liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 18:1033–1038. https://doi.org/10.1002/rcm.1441

    Article  CAS  PubMed  Google Scholar 

  4. Abbott A (2001) And now for the proteome. Nature 409:747–747. https://doi.org/10.1038/35057460

    Article  CAS  PubMed  Google Scholar 

  5. Kushnir MM, Rockwood AL, Roberts WL, Abraham D, Hoofnagle AN, Meikle AW (2013) Measurement of thyroglobulin by liquid chromatography–tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin Chem 59:982–990. https://doi.org/10.1373/clinchem.2012.195594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnidge DR, Hall GD, Stocker JL, Muddiman DC (2004) Evaluation of a cleavable stable isotope labeled synthetic peptide for absolute protein quantification using LC-MS/MS. J Proteome Res 3:658–661. https://doi.org/10.1021/pr034124x

    Article  CAS  PubMed  Google Scholar 

  7. Ocaña MF, Neubert H (2010) An immunoaffinity liquid chromatography–tandem mass spectrometry assay for the quantitation of matrix metalloproteinase 9 in mouse serum. Anal Biochem 399:202–210. https://doi.org/10.1016/j.ab.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Jiang H, Zeng J, Titsch C, Voronin K, Akinsanya B, Luo L, Shen H, Desai DD, Allentoff A, Aubry AF, Desilva BS, Arnold ME (2013) Fully validated LC-MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal Chem 85:9859–9867. https://doi.org/10.1021/ac402420v

    Article  CAS  PubMed  Google Scholar 

  9. Kito K, Ota K, Fujita T, Ito T (2007) A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res 6:792–800. https://doi.org/10.1021/pr060447s

    Article  CAS  PubMed  Google Scholar 

  10. Nanavati D, Gucek M, Milne JLS, Subramaniam S, Markey SP (2008) Stoichiometry and absolute quantification of proteins with mass spectrometry using fluorescent and isotope-labeled concatenated peptide standards. Mol Cell Proteomics 7:442–447. https://doi.org/10.1074/mcp.M700345-MCP200

    Article  CAS  PubMed  Google Scholar 

  11. Cheung CS, Anderson KW, Benitez KYV, Soloski MJ, Aucott JN, Phinney KW, Turko IV (2015) Quantification of Borrelia burgdorferi membrane proteins in human serum: a new concept for detection of bacterial infection. Anal Chem 87:11383–11388. https://doi.org/10.1021/acs.analchem.5b02803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackenzie RJ, Lawless C, Holman SW, Lanthaler K, Beynon RJ, Grant CM, Hubbard SJ, Eyers CE (2016) Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics 16:2128–2140. https://doi.org/10.1002/pmic.201500503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Wei S, Ji Y, Guo X, Yang F (2015) Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics 15:3175–3192. https://doi.org/10.1002/pmic.201500108

    Article  CAS  PubMed  Google Scholar 

  14. Zhe M, Jie P, Hui Z, Bin X, Xiaomeng P, Huixing L, Chengping L, Hongjie F (2016) SILAC and LC-MS/MS identification of Streptococcus equi ssp. zooepidemicus proteins that contribute to mouse brain microvascular endothelial cell infection. Appl Microbiol Biotechnol 100:7125–7136. https://doi.org/10.1007/s00253-016-7579-4

    Article  CAS  PubMed  Google Scholar 

  15. Xu Z, Wang F, Fan F, Gu Y, Shan N, Meng X, Cheng S, Liu Y, Wang C, Song Y, Xu R (2015) Quantitative proteomics reveals that the inhibition of Na+/K+-ATPase activity affects S-phase progression leading to a chromosome segregation disorder by attenuating the Aurora A function in hepatocellular carcinoma cells. J Proteome Res 14:4594–4602. https://doi.org/10.1021/acs.jproteome.5b00724

    Article  CAS  PubMed  Google Scholar 

  16. Yagoub D, Hart-Smith G, Moecking J, Erce MA, Wilkins MR (2015) Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p. Proteomics 15:3209–3218. https://doi.org/10.1002/pmic.201500075

    Article  CAS  PubMed  Google Scholar 

  17. Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, Schulman H, Kopito RR (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8:691. https://doi.org/10.1038/nmeth.1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huillet C, Adrait A, Lebert D, Picard G, Trauchessec M, Louwagie M, Dupuis A, Hittinger L, Ghaleh B, Le Corvoisier P, Jaquinod M, Garin J, Bruley C, Brun V (2012) Accurate quantification of cardiovascular biomarkers in serum using Protein Standard Absolute Quantification (PSAQ™) and selected reaction monitoring. Mol Cell Proteomics 11:M111-008235. https://doi.org/10.1074/mcp.M111.008235

    Article  CAS  PubMed  Google Scholar 

  19. Hoofnagle AN, Becker JO, Oda MN, Cavigiolio G, Mayer P, Vaisar T (2012) Multiple-reaction monitoring–mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin Chem 58:777–781. https://doi.org/10.1373/clinchem.2011.173856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arsene CG, Ohlendorf R, Burkitt W, Pritchard C, Henrion A, Bunk DM, Güttler B (2008) Protein quantification by isotope dilution mass spectrometry of proteolytic fragments: cleavage rate and accuracy. Anal Chem 80:4154–4160. https://doi.org/10.1021/ac7024738

    Article  CAS  PubMed  Google Scholar 

  21. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149. https://doi.org/10.1074/mcp.M700163-MCP200

    Article  CAS  PubMed  Google Scholar 

  22. Sakaguchi Y, Kinumi T, Takatsu A (2016) Quantification of peptides using N-terminal isotope coding and C-terminal derivatization for sensitive analysis by micro liquid chromatography-tandem mass spectrometry. J Mass Spectrom 51:1111–1119. https://doi.org/10.1002/jms.3845

    Article  CAS  PubMed  Google Scholar 

  23. Sakaguchi Y, Kinumi T, Takatsu A (2017) Isotope-dilution liquid chromatography-tandem mass spectrometry for sensitive quantification of human insulin in serum using derivatization-technique. Anal Biochem 537:26–32. https://doi.org/10.1016/j.ab.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  24. Kim Y, Ahn S, Chang T (2010) Isotopic effect in the separation of polystyrene by normal phase and reversed phase liquid chromatography. Anal Chem 82:1509–1514. https://doi.org/10.1021/ac902622t

    Article  CAS  PubMed  Google Scholar 

  25. Samuelsson J, Arnell R, Diesen JS, Tibbelin J, Paptchikhine A, Fornstedt T, Sjöberg PJR (2008) Development of the tracer-pulse method for adsorption studies of analyte mixtures in liquid chromatography utilizing mass spectrometric detection. Anal Chem 80:2105–2112. https://doi.org/10.1021/ac702399a

    Article  CAS  PubMed  Google Scholar 

  26. Glenne E, Öhlén K, Leek H, Klarqvist M, Samuelsson J, Fornstedt T (2016) A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography. J Chromatogr A 1442:129–139. https://doi.org/10.1016/j.chroma.2016.03.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Sakaguchi.

Ethics declarations

Conflict of Interest

The authors have not disclosed any competing interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

Informed consent was obtained from all participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaguchi, Y., Kinumi, T. & Takatsu, A. A Dual Functional-Group Derivatization Liquid Chromatography–Tandem Mass Spectrometry Method: Application for Quantification of Human Insulin. Chromatographia 85, 343–352 (2022). https://doi.org/10.1007/s10337-022-04136-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04136-0

Keywords

Navigation