Skip to main content
Log in

Modeling and Optimization of Chromatographic Purification of Arglabin from CO2 Extract of Artemisia glabella Kar. et Kir.

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The dried aerial parts of the plant Artemisia glabella Kar. et Kir. contain about 1.1% of the very important sesquiterpene lactone arglabin. This compound can be extracted by supercritical CO2 giving a 20 time concentrated extract containing about 22% arglabin. The CO2 extract can be efficiently treated by hydrostatic countercurrent chromatography (CCC) able to produce in a single run 95% pure arglabin. Both mobile and stationary phase are liquid in CCC. The biphasic waterless liquid system heptane:ethyl acetate:acetonitrile 2:1:2 v/v/v was used to separate arglabin from its two major co-extracted compounds: argolide and eucalyptol. A three-factor Box–Behnken design was used to optimize the CCC preparative purification of the CO2 extract by a FCPC-5L instrument. Injected amount, mobile phase flow rate, and rotor rotation speed were used to optimize arglabin productivity. An optimized run was able to treat 90 g of extract producing 20 g of 95% pure arglabin in 50 min, a theoretical productivity of 400 mg/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asmous VC (1943) Karelin (1801–1872) and Kirilov (1821–1842) explorers of Siberia and Middle Asia. J Arnold Arboretum 24: 107–117. https://www.jstor.org/stable/43781073

  2. Abderrazak A, Couchie D, Mahmood DFD, Elhage R, Vindis C, Laffargue M, Mateo V, Buchele B, Ayaly MR, ElGaafary M, Syrovets T, Slimane M-N, Friguet B, Fulop T, Simmet T, El Hadri K, Rouis M (2015) Anti-Inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor Arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131:1061–1070. https://doi.org/10.1161/circulationaha.114.013730

    Article  CAS  PubMed  Google Scholar 

  3. Abderrazak A, El Hadri K, Bosc E, Blondeau B, Slimane M-N, Buchele B, Simmet T, Couchie D, Rouis M (2016) Inhibition of the inflammasome NLRP3 by Arglabin attenuates inflammation, protects pancreatic β-cells from apoptosis, and prevents Type 2 diabetes mellitus development in ApoE2Ki mice on a chronic high-fat diet. J Pharmacol Exp Ther 357:487–494. https://doi.org/10.1124/jpet.116.232934

    Article  CAS  PubMed  Google Scholar 

  4. Adekenov S, Zhumakayeva A, Perminov V, Bekmanov B, Rakhimov K (2020) Neoadjuvent therapy with drug Arglabin for breast cancer with expression of H-Ras oncoproteins. Asian Pac J Cancer Prev 21:3441–3447. https://doi.org/10.31557/apjcp.2020.21.11.3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adekenov SM (2008) Method for producing radio-sensitizing agent from Artemisia glabella, Russian Patent EA9712

  6. Adekenov SM, Mukhametzhanov MN, Kagarlitskii AD, Kupriyanov AN (1982) Arglabin—a new sesquiterpene lactone from Artemisia glabella. Chem Nat Compd 18:623–624. https://doi.org/10.1007/BF00575063

    Article  Google Scholar 

  7. Adekenov S (2004) US Patent 6,242,617, B1, Jun. 5. 2001; European Patent No. 0 946 565, 15.10.2003; Deutshchen Patent No. 697 2504.9-08, 23.10.2003; Swiss Patent 97 947 981.3 (CH) EP 0946565, 2004; China Patent ZL 2006 8 0055852.4, 26.12.2012.

  8. Adekenov SM (2016) Chemical modification of arglabin and biological activity of its new derivatives. Fitoterapia 110:196–205. https://doi.org/10.1016/j.fitote.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  9. Adekenov SM (2013) Natural sesquiterpene lactones as renewable chemical materials for new medicinal products. Euras Chem Tech J 15:163–174. https://doi.org/10.18321/ectj220

    Article  CAS  Google Scholar 

  10. Berthod A, Faure K (2015) Separations with a liquid stationary phase: Countercurrent Chromatography or Centrifugal Partition Chromatography. Anal Sep Sci 4:1177–1206. https://doi.org/10.1002/9783527678129.assep046

    Article  CAS  Google Scholar 

  11. Berthod A (2002) Countercurrent chromatography. The support free liquid stationary phase. In: Barcelo D (ed) Comprehensive analytical chemistry, vol 38. Elsevier, Amsterdam

    Google Scholar 

  12. Adekenova AS, Sakenova PY, Ivasenko SA, Khabarov IA, Adekenov SM, Berthod A (2016) Gram-scale purification of two sesquiterpene lactones from chartolepis intermedia boiss. Chromatographia 79:37–43. https://doi.org/10.1007/s10337-015-3000-1

    Article  CAS  Google Scholar 

  13. Li A, Sun A, Liu R (2005) Preparative isolation and purification of costunolide and dehydrocostuslactone from aucklandia lappa decne by high-speed counter-current chromatography. J Chromatogr A 1076:193–197. https://doi.org/10.1016/j.chroma.2005.04.042

    Article  CAS  PubMed  Google Scholar 

  14. Wu H, Su Z, Yang Y, Ba H, Aisa HA (2007) Isolation of three sesquiterpene lactones from the roots of Cichorium glandulosum Boiss. et Huet. by high-speed counter-current chromatography. J Chromatogr A 1176:217–222. https://doi.org/10.1016/j.chroma.2007.11.013

    Article  CAS  PubMed  Google Scholar 

  15. Pinel B, Audo G, Mallet S, Lavault M, De La Poype F, Séraphin D, Richomme P (2007) Multi-grams scale purification of xanthanolides from Xanthium macrocarpum: centrifugal partition chromatography versus silica gel chromatography. J Chromatogr A 1151:14–19. https://doi.org/10.1016/j.chroma.2007.02.115

    Article  CAS  PubMed  Google Scholar 

  16. Urbain A, Corbeiller P, Aligiannis N, Halabalaki M, Skaltsounis AL (2010) Hydrostatic countercurrent chromatography and ultra high pressure LC: two fast complementary separation methods for the preparative isolation and the analysis of the fragrant massoia lactones. J Sep Sci 33:1196–1203. https://doi.org/10.1002/jssc.200900818

    Article  CAS  Google Scholar 

  17. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Da Silva EGP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  18. Fumat N, Berthod A, Faure K (2016) Effect of operating parameters on a centrifugal partition chromatography separation. J Chromatogr A 1474:47–58. https://doi.org/10.1016/j.chroma.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  19. Schwienheer C, Krause J, Schembecker G, Merz J (2017) Modeling centrifugal partition chromatography separation behavior to characterize influencing hydrodynamic effects on separation efficiency. J Chromatogr A 1492:27–40. https://doi.org/10.1016/j.chroma.2017.02.055

    Article  CAS  PubMed  Google Scholar 

  20. Berthod A, Faure K (2015) Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect. J Chromatogr A 1390:71–77. https://doi.org/10.1016/j.chroma.2015.02.053

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out under the grant project AP08052030 “Modeling and optimization of the technology of original drugs” funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Adekenov.

Ethics declarations

Conflict of interest

Author AB and SMA declare that there is no conflict of interest.

Ethical approval

No animal nor human participants were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adekenov, S.M., Khabarov, I.A., Yakovenko, G.A. et al. Modeling and Optimization of Chromatographic Purification of Arglabin from CO2 Extract of Artemisia glabella Kar. et Kir.. Chromatographia 84, 1077–1086 (2021). https://doi.org/10.1007/s10337-021-04093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04093-0

Keywords

Navigation