Skip to main content
Log in

Chiral Analysis of Amphetamine and Methamphetamine in Urine by Liquid Chromatography-Tandem Mass Spectrometry Applying Mosher Derivatization

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Methamphetamine (MA) and amphetamine (AM) are central nervous system doping agents, listed in the WADA Prohibited List, which in the past years showed the highest prevalence among all stimulants. Specifically, concerning these stimulants, it is essential to distinguish between d and l-isomers of AM and MA due to their distinction in illicit or legal nonprescription use. The main separation methods used for the urinary determination of MA and AM enantiomers are based on chromatographic procedures, such as gas chromatography after chiral derivatization or liquid chromatography (LC) applying chiral columns, followed by the mass spectrometer (MS) detection. The use of the optically pure reagent R-(-)-α-methoxy-α-(trifluoromethyl) phenylacetic acid chloride (R-MTPA-Cl – Mosher’s Reagent) allows the isomeric separation by both chromatographic procedures while preserving the isomeric composition of the substances. Therefore, in the present work, an LC-MS2 approach has been developed for AM and MA detection in urine after Mosher derivatization. The method was validated and can be used for the enantioselective confirmation of AM and MA for doping control purposes and forensic analysis in general, being useful for the distinction between the medicinal and illicit use of both stimulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Anti-Doping Agency (WADA) (2017) Anti-doping testing figures. WADA, Montreal

    Google Scholar 

  2. Wang T, Shen B, Shi Y, Xiang P, Yu Z (2015) Chiral separation and determination of R/S-methamphetamine and its metabolite R/S-amphetamine in urine using LC-MS/MS. Forensic Sci Int 246:72–78. https://doi.org/10.1016/j.forsciint.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  3. World Anti-Doping Agency (2020) The prohibited list. WADA, Montreal

    Google Scholar 

  4. Holler JM, Vorce SP, Bosy TZ, Jacobs A (2005) Quantitative and isomeric determination of amphetamine and methamphetamine from urine using a nonprotic elution solvent and R(-)-α-methoxy-α- trifluoromethylphenylacetic acid chloride derivatization. J Anal Toxicol 29:652–657. https://doi.org/10.1093/jat/29.7.652

    Article  CAS  PubMed  Google Scholar 

  5. Pozo OJ, Lootens L, Van Eenoo P, Deventer K, Meuleman P, Leroux-Roels G, Parr MK, Schänzer W, Delbeke FT (2009) Combination of liquid-chromatography tandem mass spectrometry in different scan modes with human and chimeric mouse urine for the study of steroid metabolism. Drug Metab Pharmacokinet 55:139–150.

  6. Badoud F, Guillarme D, Boccard J, Grata E, Saugy M, Rudaz S, Veuthey JL (2011) Analytical aspects in doping control: Challenges and perspectives. Forensic Sci Int 213:49–61. https://doi.org/10.1016/j.forsciint.2011.07.024

    Article  CAS  PubMed  Google Scholar 

  7. Maas A, Losacker M, Hess C (2018) Chromatographic separation of R/S-enantiomers of amphetamine and methamphetamine: pathways of methamphetamine synthesis and detection in blood samples by qualitative enantioselective LC–MS/MS analysis. Forensic Sci Int 291:138–143. https://doi.org/10.1016/j.forsciint.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  8. Hegstad S, Havnen H, Helland A, Spigset O, Frost J (2018) Enantiomeric separation and quantification of R/S-amphetamine in urine by ultra-high performance supercritical fluid chromatography tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 1077–1078:7–12. https://doi.org/10.1016/j.jchromb.2018.01.028

    Article  CAS  Google Scholar 

  9. Concheiro M, Simões SMSS, Quintela Ó, Castro A, Dias MJR, Cruz A, López-Rivadulla M (2007) Fast LC-MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Sci Int 171:44–51. https://doi.org/10.1016/j.forsciint.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  10. Chou CC, Lee MR (2005) Solid phase microextraction with liquid chromatography-electrospray ionization-tandem mass spectrometry for analysis of amphetamine and methamphetamine in serum. Anal Chim Acta 538:49–56. https://doi.org/10.1016/j.aca.2005.02.018

    Article  CAS  Google Scholar 

  11. Fuh MR, Wu TY, Lin TY (2006) Determination of amphetamine and methamphetamine in urine by solid phase extraction and ion-pair liquid chromatography-electrospray-tandem mass spectrometry. Talanta 68:987–991. https://doi.org/10.1016/j.talanta.2005.06.057

    Article  CAS  PubMed  Google Scholar 

  12. Strano-Rossi S, Botrè F, Bermejo AM, Tabernero MJ (2009) A rapid method for the extraction, enantiomeric separation and quantification of amphetamines in hair. Forensic Sci Int 193:95–100. https://doi.org/10.1016/j.forsciint.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  13. Weiß JA, Kadkhodaei K, Schmid MG (2017) Indirect chiral separation of 8 novel amphetamine derivatives as potential new psychoactive compounds by GC–MS and HPLC. Sci Justice 57:6–12. https://doi.org/10.1016/j.scijus.2016.08.007

    Article  PubMed  Google Scholar 

  14. Popovic A, McBriar T, He P, Beavis A (2017) Chiral determination and assay of optical isomers in clandestine drug laboratory samples using LC-MSMS. Anal Methods 9:3380–3387. https://doi.org/10.1039/c6ay03125k

    Article  CAS  Google Scholar 

  15. Ali I, Sahoo DR, ALOthman ZA, Alwarthan AA, Asnin L, Larsson, B, (2015) Validated chiral high performance liquid chromatography separation method and simulation studies of dipeptides on amylose chiral column. J Chromatogr A 1406:201–209. https://doi.org/10.1016/j.chroma.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  16. Ali I, Suhail M, ALOthman ZA, Al-Mohaimeed AM, Alwarthan A, (2020) Chiral resolution of four stereomers and simulation studies of newly synthesized antibacterial agents having two chiral centers. Sep Purif Technol 236:116256. https://doi.org/10.1016/j.seppur.2019.116256

    Article  CAS  Google Scholar 

  17. Al-Othman ZA, Ali I (2012) Rapid and economic chiral-HPLC method of nebivolol enantiomers resolution in dosage formulation. Biomed Chromatogr 26:775–780. https://doi.org/10.1002/bmc.1728

    Article  CAS  PubMed  Google Scholar 

  18. Mazzarino M, Fiacco I, de la Torre X, Botrè F (2011) Screening and confirmation analysis of stimulants, narcotics and beta-adrenergic agents in human urine by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 1218:8156–8167. https://doi.org/10.1016/j.chroma.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  19. Haneef J, Shaharyar M, Husain A, Rashid M, Mishra R, Parveen S, Ahmed N, Pal M, Kumar D (2013) Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids. J Pharm Anal 3:341–348. https://doi.org/10.1016/j.jpha.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reddy I, Beotra A, Jain S, Ahi S (2009) A simple and rapid ESI-LC-MS/MS method for simultaneous screening of doping agents in urine samples. Indian J Pharmacol 41:80–86. https://doi.org/10.4103/0253-7613.51347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thevis M, Thomas A, Schänzer W (2011) Current role of LC-MS(/MS) in doping control. Anal Bioanal Chem 401:405–420. https://doi.org/10.1007/s00216-011-4859-9

    Article  CAS  PubMed  Google Scholar 

  22. Wood M, De Boeck G, Samyn N, Morris M, Cooper DP, Maes RAA, De Bruijn EA (2003) Development of a rapid and sensitive method for the quantitation of amphetamines in human plasma and oral fluid by LC-MS-MS. J Anal Toxicol 27:78–87. https://doi.org/10.1093/jat/27.2.78

    Article  CAS  PubMed  Google Scholar 

  23. Nakanishi K, Katagi M, Zaitsu K, Shima N, Kamata H, Miki A, Kato H, Harada KI, Tsuchihashi H, Suzuki K (2012) Simultaneous enantiomeric determination of MDMA and its phase I and phase II metabolites in urine by liquid chromatography-tandem mass spectrometry with chiral derivatization. Anal Bioanal Chem 404:2427–2435. https://doi.org/10.1007/s00216-012-6385-9

    Article  CAS  PubMed  Google Scholar 

  24. Newmeyer MN, Concheiro M, Huestis MA (2014) Rapid quantitative chiral amphetamines liquid chromatography-tandem mass spectrometry: method in plasma and oral fluid with a cost-effective chiral derivatizing reagent. J Chromatogr A 1358:68–74. https://doi.org/10.1016/j.chroma.2014.06.096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwelm HM, Grumann C, Auwärter V, Neukamm M (2020) Application of a chiral HPLC-MS/MS method for the determination of 13 related amphetamine-type stimulants to forensic samples: Interpretative hypotheses. Drug Test Anal Accepted a: https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  26. J. Miller K, Gal J, Ames MM, (1984) High-performance liquid chromatographic resolution of enantiomers of 1-phenyl-2-aminopropanes (amphetamines) with four chiral reagents. J Chromatogr B Biomed Sci Appl 307:335–342. https://doi.org/10.1016/S0378-4347(00)84104-3

    Article  Google Scholar 

  27. Sardela VF, Martucci MEP, de Araújo ALD, Leal EC, Oliveira DS, Carneiro GRA, Deventer K, Van Eenoo P, Pereira HMG, Aquino Neto FR (2018) Comprehensive analysis by liquid chromatography-Q-Orbitrap mass spectrometry: fast screening of peptides and organic molecules. J Mass Spectrom 53:476–503. https://doi.org/10.1002/jms.4077

    Article  CAS  PubMed  Google Scholar 

  28. World Anti-Doping Agency (2019a) Minimum required performance levels for detection and identification of non-threshold substances. WADA, Montreal

    Google Scholar 

  29. Sardela VF, Sardela PDO, Deventer K, Araújo ALD, Cavalcante KM, Padilha MC, Pereira HMG, Van Eenoo P, Aquino Neto FR (2013) Identification of sympathomimetic alkylamine agents in urine using liquid chromatography-mass spectrometry and comparison of derivatization methods for confirmation analyses by gas chromatography-mass spectrometry. J Chromatogr A 1298:76–85. https://doi.org/10.1016/j.chroma.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  30. World Anti-Doping Agency (2019b) International Standard for Laboratories (ISL). WADA, Montreal

    Google Scholar 

  31. World Anti-Doping Agency (2015) Minimum criteria for chromatographic mass-spectrometric confirmation of the identity of analytes for doping control purposes. WADA, Montreal

    Google Scholar 

Download references

Acknowledgment

We are grateful to Bruna Cheble for the English review.

Funding

This work was supported by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina de Souza Anselmo.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Anselmo, C., de Vasconcellos Silveira, C.M., Sardela, V.F. et al. Chiral Analysis of Amphetamine and Methamphetamine in Urine by Liquid Chromatography-Tandem Mass Spectrometry Applying Mosher Derivatization. Chromatographia 84, 47–52 (2021). https://doi.org/10.1007/s10337-020-03984-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03984-y

Keywords

Navigation