Skip to main content
Log in

Chromatographic enantioseparation and adsorption thermodynamics of hydroxy acids and their derivatives on antibiotic-based chiral stationary phases as affected by eluent pH

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The study was dedicated to retention regularities and adsorption thermodynamics of enantiomers of aromatic hydroxy acids and their derivatives on chiral stationary phases (CSPs) Nautilus-E, Nautilus-R and Chirobiotic T with antibiotics eremomycin, ristomycin and teicoplanin from water–ethanol eluents under conditions of linear liquid chromatography. The enantioselective properties of the chiral adsorbents under study were compared. The interrelationship between the structure of the adsorbates under study, the retention and separation selectivity of their enantiomers was evinced. Dissociation constants of hydroxy acids under study in aqueous ethanol solutions were determined. The dependences of retention, separation, and thermodynamic values’ characteristics vs. eluent pH were revealed. The retention mechanism of the hydroxy acid enantiomers was found out to vary with varying eluent pH. Ion–ion interactions were evinced to determine the retention and separation selectivity of hydroxy acid enantiomers on Nautilus-E and Nautilus-R CSPs, whereas nonionic interactions on Chirobiotic T CSP can play a key role. The enantioselectivity of Chirobiotic T CSP is first of all regulated by the anionic form of hydroxy acids. The retention and enantiorecognition mechanism on the Nautilus-E and Nautilus-R CSPs were revealed to be different. The retention mechanisms for S- and R-enantiomers were found out to be similar on both CSPs. On the Nautilus-E and Nautilus-R CSPs, a distinction between the adsorption mechanisms of the enantiomers of hydroxy acids and their esters was found out. On Nautilus-E, a distinction between the adsorption mechanisms of the enantiomers hydroxy acids with different lengths of the n-alkyl substituent in the side chain containing the stereogenic center was found out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSP:

Chiral stationary phase

CS:

Chiral selectors

HA:

Hydroxy acids

MP:

Mobile phase

MA:

Mandelic acid

CC:

Chiral center

CE:

Compensation effect

References

  1. Armstrong DW, Tang Y, Chen S et al (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem 66:1473–1484. https://doi.org/10.1021/ac00081a019

    Article  CAS  Google Scholar 

  2. Armstrong DW, Liu Y, Ekborgott KH (1995) A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality 7:474–497. https://doi.org/10.1002/chir.530070614

    Article  CAS  Google Scholar 

  3. Berthod A, Qiu HX, Staroverov SM et al (2010) Chiral recognition with macrocyclic glycopeptides: mechanisms and applications. In: Berthod A (ed) Chiral recognition in separation methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_7

    Chapter  Google Scholar 

  4. Rojkovičová T, Lehotay J, Armstrong DW et al (2006) Study of the mechanism of enantioseparation. Part XII. Comparison study of thermodynamic parameters on separation of phenylcarbamic acid derivatives by HPLC using macrocyclic glycopeptide chiral stationary phases. J Liq Chromatogr Relat Technol 29:2615–2624. https://doi.org/10.1080/10826070600922847

    Article  CAS  Google Scholar 

  5. Ekborg-Ott KH, Liu Y, Armstrong DW (1998) Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Chirality 10:434–483. https://doi.org/10.1002/(SICI)1520-636X(1998)10:5%3c434::AID-CHIR10%3e3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  6. Ilisz I, Pataj Z, Aranyi A et al (2012) Macrocyclic antibiotic selectors in direct HPLC enantioseparations. Sep purif rev 41:207–249. https://doi.org/10.1080/15422119.2011.596253

    Article  CAS  Google Scholar 

  7. Berthod A (2012) Chromatographic separations and analysis: macrocyclic glycopeptide chiral stationary phases. Compre Chirality 8:227–262. https://doi.org/10.1016/B978-0-08-095167-6.00825-9

    Article  CAS  Google Scholar 

  8. Berthod A, Liu Y, Bagwill C et al (1996) Facile liquid chromatographic enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase. J Chromatogr A 731: 123–137. https://doi.org/10.1016/0021-9673(95)01198-6

    Article  CAS  Google Scholar 

  9. Kuznetsov MA, Nesterenko PN, Vasiyarov GG et al (2008) High-performance liquid chromatography of α-amino acid enantiomers on eremomycin-modified silica. Russ J Anal Chem 63:57–64. https://doi.org/10.1134/S1061934808010115

    Article  CAS  Google Scholar 

  10. Peyrin E, Ravelet C, Nicolle E et al (2001) Dansyl amino acid enantiomer separation on a teicoplanin chiral stationary phase: effect of eluent pH. J Chromatogr A 923:37–43. https://doi.org/10.1016/S0021-9673(01)00973-6

    Article  CAS  Google Scholar 

  11. Péter A, Vékes E, Armstrong DW (2002) Effects of temperature on retention of chiral compounds on a ristocetin a chiral stationary phase. J Chromatogr A 958:89–107. https://doi.org/10.1016/S0021-9673(02)00390-4

    Article  PubMed  Google Scholar 

  12. Reshetova EN, Asnin LD (2009) The chromatographic behavior and thermodynamic characteristics of adsorption of profen enantiomers on silica gel with grafted eremomycin antibiotic. Russ J Phys Chem A 83:547–551. https://doi.org/10.1134/S0036024409040062

    Article  CAS  Google Scholar 

  13. Reshetova EN, Asnin LD (2011) Effect of the ionic composition of a mobile phase on the chromatographic retention of profen enantiomers on a chiral adsorbent with grafted eremomycin antibiotic. Russ J Phys Chem 85:1434–1439. https://doi.org/10.1134/S0036024411080280

    Article  CAS  Google Scholar 

  14. Blinov AS, Reshetova EN (2014) Effect of the concentration of organic modifier in an aqueous-ethanol mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α-phenylcarboxylic acids on silica gel with immobilized eremomycin antibiotic. Russ J Phys Chem 88:1778–1784. https://doi.org/10.1134/S0036024414100057

    Article  CAS  Google Scholar 

  15. Reshetova E (2016) Chromatographic retention and thermodynamics of the adsorption of α-phenylcarboxylic acid enantiomers on a chiral stationary phase with a grafted antibiotic eremomycin: effect of eluent pH. J Liq Chromatogr Relat Technol 39:145–153. https://doi.org/10.1080/10826076.2015.1137004

    Article  CAS  Google Scholar 

  16. Reshetova EN (2017) Effect of the ionic strength of a mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α phenylcarboxylic acids on a chiral adsorbent with grafted antibiotic eremomycin. Russ J Phys Chem 91:167–174. https://doi.org/10.1134/S0036024417010228

    Article  CAS  Google Scholar 

  17. Gogolishvili OSh, Reshetova EN (2019) Effect of the concentration of an organic modifier of a water–ethanol mobile phase on the retention and thermodynamics of adsorption of enantiomers of hydroxy acids and their derivatives on a chiral adsorbent with a grafted antibiotic eremomycin. Russ J Phys Chem 93:1155–1164. https://doi.org/10.1134/S0036024419060128

    Article  CAS  Google Scholar 

  18. Phyo YZ, Cravo S, Palmeira A et al (2018) Enantiomeric resolution and docking studies of chiral xanthonic derivatives on chirobiotic columns. Molecules 23:142–163. https://doi.org/10.3390/molecules23010142

    Article  CAS  PubMed Central  Google Scholar 

  19. Gasper MP, Berthod A, Nair UB et al (1996) Comparison and modeling study of vancomycin, ristocetin A, and teicoplanin for CE enantioseparations. Anal Chem 68:2501–2514. https://doi.org/10.1021/ac960154q

    Article  CAS  PubMed  Google Scholar 

  20. Xiao TL, Zhang B, Lee JT et al (2001) Reversal of enantiomeric elution order on macrocyclic glycopeptide chiral stationary phases. J Liq Chromatogr Relat Technol 24:2673–2684. https://doi.org/10.1081/JLC-100106094

    Article  CAS  Google Scholar 

  21. Ilisz I, Orosz T, Péter A (2019) High-performance liquid chromatography enantioseparations using macrocyclic glycopeptide-based chiral stationary phases: an overview. In: Scriba GKE (ed) Chiral separations. Methods in molecular biology, vol 1985. Humana, New York, pp 201–237. https://doi.org/10.1007/978-1-4939-9438-0_12

    Google Scholar 

  22. Staroverov SM, Kuznetsov MA, Nesterenko PN et al (2006) New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica. J Chromatogr A 1108:263–267. https://doi.org/10.1016/j.chroma.2006.01.073

    Article  CAS  PubMed  Google Scholar 

  23. Péter A, Török G, Armstrong DW et al (2000) High-performance liquid chromatographic separation of enantiomers of synthetic amino acids on a ristocetin A chiral stationary phase. J Chromatogr A 904:1–15. https://doi.org/10.1016/S0021-9673(00)00917-1

    Article  PubMed  Google Scholar 

  24. Török G, Péter A, Armstrong DW et al (2001) Direct chiral separation of unnatural amino acids by high performance liquid chromatography on a ristocetin A-bonded stationary phase. Chirality 13:648–656. https://doi.org/10.1002/chir.10004

    Article  PubMed  Google Scholar 

  25. Lokajová J, Tesařová E, Armstrong DW (2005) Comparative study of three teicoplanin-based chiral stationary phases using the linear free energy relationship model. J Chromatogr A 1088:57–66. https://doi.org/10.1016/j.chroma.2005.03.105

    Article  CAS  PubMed  Google Scholar 

  26. Loukili B, Dufresne C, Jourdan E et al (2003) Study of tryptophan enantiomer binding to a teicoplanin-based stationary phase using the perturbation technique: investigation of the role of sodium perchlorate in solute retention and enantioselectivity. J Chromatogr A 986:45–53. https://doi.org/10.1016/S0021-9673(02)01952-0

    Article  CAS  PubMed  Google Scholar 

  27. Reshetova EN, Asnin LD, Kachmarsky K (2018) Effect of secondary equilibria on the adsorption of ibuprofen enantiomers on a chiral stationary phase with a grafted antibiotic eremomycin. Russ J Phys Chem A 92:361–367. https://doi.org/10.1134/S0036024418010223

    Article  CAS  Google Scholar 

  28. Fornstedt T, Sajonz P, Guiochon G (1998) A closer study of chiral retention mechanisms. Chirality 10:375–381. https://doi.org/10.1002/(SICI)1520-636X(1998)10:5%3c375::AID-CHIR3%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  29. Rojkovičová T, Lehotay J, Meričko D et al (2004) Study of the mechanism of enantioseparation. IX. Effect of temperature on retention of chiral compounds on a methylated teicoplanin chiral stationary phase. J Liq Chromatogr Relat Technol 27:2477–2494. https://doi.org/10.1081/JLC-200028364

    Article  CAS  Google Scholar 

  30. Rojkovičová T, Lehotay J, Armstrong DW et al (2004) Study of the mechanism of enantioseparation X. Comparison study of thermodynamic parameters on separation of phenylcarbamic acid derivatives using vancomycin and teicoplanin CSPs. J Liq Chromatogr Relat Technol 27:3213–3226. https://doi.org/10.1081/JLC-200034897

    Article  CAS  Google Scholar 

  31. Pataj Z, Ilisz I, Berkecz R et al (2008) Comparison of performance of Chirobiotic T, T2 and TAG columns in the separation of β2-and β3-homoamino acids. J Sep Sci 31:3688–3697. https://doi.org/10.1002/jssc.200800388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Péter A, Török G, Armstrong DW et al (1998) Effect of temperature on retention of enantiomers of β-methyl amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 828:177–190. https://doi.org/10.1016/S0021-9673(98)00835-8

    Article  PubMed  Google Scholar 

  33. Oumada FZ, Ràfols C, Rosés M et al (2002) Chromatographic determination of aqueous dissociation constants of some water-insoluble nonsteroidal antiinflammatory drugs. J Pharm Sci 91:991–999. https://doi.org/10.1002/jps.10096

    Article  CAS  PubMed  Google Scholar 

  34. Nikitina YK, Ali I, Asnin LD (2014) Adsorption of aqueous organic mixtures on a chiral stationary phase with bound antibiotic eremomycin. J Chromatogr A 1363:71–78. https://doi.org/10.1016/j.chroma.2014.08.062

    Article  CAS  PubMed  Google Scholar 

  35. Hui F, Ekborg-Ott KH, Armstrong DW (2001) High-performance liquid chromatographic and capillary electrophoretic enantioseparation of plant growth regulators and related indole compounds using macrocyclic antibiotics as chiral selectors. J Chromatogr A 906:91–103. https://doi.org/10.1016/S0021-9673(00)00954-7

    Article  CAS  PubMed  Google Scholar 

  36. Cavazzini A, Nadalini G, Dondi F et al (2004) Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin-based chiral stationary phase. J Chromatogr A 1031:143–158. https://doi.org/10.1016/j.chroma.2003.10.090

    Article  CAS  PubMed  Google Scholar 

  37. He X, Lin R, He H et al (2012) Chiral separation of ketoprofen on a chirobiotic T column and its chiral recognition mechanisms. Chromatographia 75:1355–1363. https://doi.org/10.1007/s10337-012-2352-z

    Article  CAS  Google Scholar 

  38. Schoenmakers PJ (1986) Optimization of chromatographic selectivity - a guide to method development. Elsevier science, Amsterdam

    Google Scholar 

  39. Prokhorova AF, Shapovalova EN, Shpak AV et al (2009) Enantiorecognition of profens by capillary electrophoresis using a novel chiral selector eremomycin. J Chromatogr A 1216:3674–3677. https://doi.org/10.1016/j.chroma.2009.02.017

    Article  CAS  PubMed  Google Scholar 

  40. Rundlett KL, Gasper MP, Zhou EY et al (1996) Capillary electrophoretic enantiomeric separations using the glycopeptide antibiotic, teicoplanin. Chirality 8:88–107. https://doi.org/10.1002/(SICI)1520-636X(1996)8:1%3c88::AID-CHIR15%3e3.0.CO;2-O

    Article  CAS  Google Scholar 

  41. Péter A, Török G, Armstrong DW (1998) High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 793:283–296. https://doi.org/10.1016/S0021-9673(97)00938-2

    Article  PubMed  Google Scholar 

  42. Jandera P, Škavrada M, Klemmová K et al (2001) Effect of the mobile phase on the retention behaviour of optical isomers of carboxylic acids and amino acids in liquid chromatography on bonded teicoplanin columns. J Chromatogr A 917:123–133. https://doi.org/10.1016/S0021-9673(01)00701-4

    Article  CAS  PubMed  Google Scholar 

  43. Berthod A, He BL, Beesley TE (2004) Temperature and enantioseparation by macrocyclic glycopeptide chiral stationary phases. J Chromatogr A 1060:205–214. https://doi.org/10.1016/j.chroma.2004.05.072

    Article  CAS  PubMed  Google Scholar 

  44. Fornstedt T (2010) Characterization of adsorption processes in analytical liquid–solid chromatography. J Chromatogr A 1217:792–812. https://doi.org/10.1016/j.chroma.2009.12.044

    Article  CAS  PubMed  Google Scholar 

  45. Kuznetsov MA (2008) Enantioselective sorbents with immobilized macrocyclic glycopeptide antibiotics. PhD thesis. The Russian State Library, Moscow, p 131. https://www.rsl.ru (In Russian)

  46. Xiao TL, Armstrong DW (2004) Enantiomeric separations by HPLC using macrocyclic glycopeptide-based chiral stationary phases. In: Gübitz G, Schmid MG (eds) Chiral separations. Methods in molecular biology, vol 243. Humana Press, New York, pp 113–171. https://doi.org/10.1385/1-59259-648-7:113

    Chapter  Google Scholar 

  47. Reshetova EN, Kopchenova MV, Vozisov SE et al (2019) Enantioselective retention mechanisms of dipeptides on antibiotic-based chiral stationary phases: leucyl-leucine, glycyl-leucine, and leucyl-glycine as case studies. J Chromatogr A 1602:368–377. https://doi.org/10.1016/j.chroma.2019.06.025

    Article  CAS  PubMed  Google Scholar 

  48. Melander W, Campbell DE, Horvath Cs (1978) Enthalpy—entropy compensation in reversed-phase chromatography. J Chromatogr 158:215–225. https://doi.org/10.1016/S0021-9673(00)89968-9

    Article  CAS  Google Scholar 

  49. Krug RR, Hunter WG, Grieger RA (1976) Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J Phys Chem 80:2341–2351. https://doi.org/10.1021/j100562a007

    Article  CAS  Google Scholar 

  50. Vailaya A, Horvath Cs (1998) Exothermodynamic relationships in liquid chromatography. J Phys Chem B 102:701–718. https://doi.org/10.1021/jp972787u

    Article  CAS  Google Scholar 

  51. Krug RR, Hunter WG, Grieger RA (1976) Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data. J Phys Chem 80:2335–2341. https://doi.org/10.1021/j100562a006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out using the equipment of The Core Facilities Center “Research of materials and matter” at the PFRC UB RAS. This study was financially supported by the Russian Foundation for Basic Research under the Grant Nr. 18-03-00053-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Reshetova.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogolishvili, O.S., Reshetova, E.N. Chromatographic enantioseparation and adsorption thermodynamics of hydroxy acids and their derivatives on antibiotic-based chiral stationary phases as affected by eluent pH. Chromatographia 84, 53–73 (2021). https://doi.org/10.1007/s10337-020-03978-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03978-w

Keywords

Navigation