Skip to main content
Log in

Stability Indicating, pH and pKa Dependent HPLC–DAD Method for the Simultaneous Determination of Weakly Ionizable Empagliflozin, Dapagliflozin and Canagliflozin in Pharmaceutical Formulations

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple, rapid, and accurate stability-indicating reverse phase HPLC–DAD method was developed and validated for the simultaneous determination of empagliflozin, dapagliflozin, and canagliflozin (Gliflozins). Optimum chromatographic separations among gliflozins in the presence of matrices and degradation products have been achieved within 7 min by using Hypercil™ C18 column (25 × 4.6 mm, 5 μm) with acetonitrile and 0.1% formic acid buffer, pH 3.7 (60:40 v/v) as the mobile phase at a flow rate of 1 mL min−1. The proposed method was performed at 230 nm for empagliflozin and dapagliflozin while detection of canagliflozin was carried out at 290 nm. Analytical performance of the method was thoroughly validated in accordance with the ICH guidelines with respect to system suitability, linearity, accuracy, precision, specificity, robustness, detection and quantification limits. Regression analysis showed good correlations with regard to R2 ≥ 0.997 over the concentration range of 4–160 µg mL−1 for gliflozins. The LOD was found to be 0.07 µg mL−1, 0.12 µg mL−1 and 0.29 µg mL−1 for empagliflozin, dapagliflozin and canagliflozin, respectively. Method development was established keeping in view the structure of drugs, their pKa values, ionizability of drugs, pH values of buffer system and buffer capacity. Peak purities of gliflozins in stress tests are less than 1.5, which further confirms no co-elution of degradation products. The proposed method is suitable for routine quality control analysis of gliflozins and to carry out stability studies.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kramer H, Molitch ME (2005) Screening for kidney disease in adults with diabetes. Diabetes Care 28:1813–1816

    Google Scholar 

  2. Jung CH, Jang JE, Park JY (2014) A novel therapeutic agent for type 2 diabetes mellitus: SGLT2 inhibitor. Diabetes Metab J 38:261–273

    Google Scholar 

  3. Bailey CJ, Iqbal N, Tjoen C, List JF (2012) Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 14:951–959

    CAS  Google Scholar 

  4. AstraZeneca Pharmaceuticals LLP (2014) Farxiga™ (dapagliflozin) US prescribing information

  5. Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF (2012) Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract 66:446–456

    CAS  Google Scholar 

  6. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, Capuano G, Canovatchel W (2012) Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35:1232–1238

    CAS  Google Scholar 

  7. Janssen Pharmaceticals Inc. (2014) Invokana™ (canagliflozin) US prescribing information

  8. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, Canovatchel W, Meininger W (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15:372–382

    CAS  Google Scholar 

  9. Heise T, Seewaldt-Becker E, Macha S, Hantel S, Pinnetti S, Seman L, Woerle HJ (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics following weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 2013:1–9

    Google Scholar 

  10. Haering H-U, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, Broedl UC (2013) Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 36:3396–3404

    Google Scholar 

  11. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17:1180–1193

    CAS  Google Scholar 

  12. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo controlled trial. Lancet Diabetes Endocrinol 2:369–384

    CAS  Google Scholar 

  13. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, Woerle HJ (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38:420–428

    CAS  Google Scholar 

  14. Padmaja N, Veerabhadram G (2016) Development and validation of a novel stability-indicating RP-HPLC method for the determination of empagliflozin in bulk and pharmaceutical dosage form. IJPSR 7:4523–4530

    CAS  Google Scholar 

  15. Abdel-Ghany MF, Ayad MF, Tadros MM (2018) Liquid chromatographic and spectrofluorimetric assays of empagliflozin: applied to degradation kinetic study and content uniformity testing. Luminescence 35:919–932

    Google Scholar 

  16. Jyothirmai N, Nagaraju B, Kumar MA (2016) Novel UV and visible spectrophotometric methods for the analysis of empagliflozin a type 2 diabetic drug in bulk and pharmaceutical formulations. J Afrikana 3:177–187

    Google Scholar 

  17. Sanagapati M, Dhanalakshmi K, Reddy GN, Sreenivasa S (2014) Development and validation of stability-indicating RP-HPLC method for determination of dapagliflozin. J Adv Pharm Edu & Res 4:350–353

    CAS  Google Scholar 

  18. Manasa S, Dhanalakshmi K, Reddy GN, Sreenivasa S (2014) Method development and validation of dapagliflozin in API by RPHPLC and UV-spectroscopy. Int J Pharm Sci Drug Res 6:250–252

    CAS  Google Scholar 

  19. Debata J, Kumar S, Jha SK, Khan A (2017) A new RP-HPLC method development and validation of dapagliflozin in bulk and tablet dosage form. Int J Drug Dev Res 9:48–51

    CAS  Google Scholar 

  20. Omar MA, Hamid MAA, Batakoushy HA, Ahmed HM (2019) Second-derivative synchronous spectrofluorimetric assay of dapagliflozin: application to stability study and pharmaceutical preparation. Luminescence 35:260–265

    Google Scholar 

  21. Kaur I, Wakode S, Singh HP, Manachanda S (2016) Development and validation of a stability-indicating reverse phase HPLC–PDA method for determination of canagliflozin in bulk and pharmaceutical dosage form. Pharm Methods 7:54–62

    CAS  Google Scholar 

  22. Kumar DV, Seshagiri Rao JVLN (2018) A new validated stability indicating RP-HPLC method for simultaneous estimation of metformin hydrochloride and empagliflozin in tablet dosage forms. IRJPMS 1:6–22

    Google Scholar 

  23. Padmaja N, Babu MS, Veerabhadram G (2016) Development and validation of UV spectrophotometric method for simultaneous estimation of empagliflozin and metformin hydrochloride in bulk drugs and combined dosage forms. Der Pharm Lett 8:207–213

    CAS  Google Scholar 

  24. Naazneen S, Sridevi A (2016) Development and validation of stability indicating RP–HPLC method for simultaneous estimation of empagliflozine and linagliptin in tablet formulation. Der Pharm Lett 8:57–65

    CAS  Google Scholar 

  25. Ali SI, Kumar PBR (2017) Stability indicating simultaneous estimation of metformin and empagliflozin in pharmaceutical tablet dosage form by RP-HPLC. Asian J Res Chem 10:783–788

    Google Scholar 

  26. Geetha SP, Lakshmana RK, Prasad K, Suresh BK (2016) Development and validation of stability-indicating reversed phase high-performance liquid chromatographic method for simultaneous estimation of metformin and empagliflozin in bulk and tablet dosage form. Asian J Pharm Clin Res 9:126–135

    CAS  Google Scholar 

  27. Pratyusha CR, Raju MB (2016) Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of metformin hydrochloride and empagliflozin in bulk and in a synthetic mixture. J Pharm 6:138–147

    CAS  Google Scholar 

  28. Madana GN, Sridhar C (2017) A validated stability indicating ultra-performance liquid chromatographic method for simultaneous determination of metformin hydrochloride and empagliflozin in bulk drug and tablet dosage form. Int J App Pharm 9:45–50

    Google Scholar 

  29. Padmaja N, Veerabhadram G (2017) A novel stability indicating RP-UPLC-Dad method for determination of metformin and empagliflozin in bulk and tablet dosage form. Orient J Chem 33:1949–1958

    CAS  Google Scholar 

  30. Urooj A, Sundar PS, Vasanthi R, Raja MA, Dutt KR, Rao KNV, Ramana H (2017) Development and validation of RP-HPLC method for simultaneous estimation of dapagliflozin and metformin in bulk and in synthetic mixture. World J Pharm Pharm Sci 6:2139–2150

    CAS  Google Scholar 

  31. Yunoos M, Sankar DG (2015) A validated stability indicating high-performance liquid chromatographic method for simultaneous determination of metformin HCl and dapagliflozin in bulk drug and tablet dosage form. Asian J Pharm Clin Res 8:320–326

    CAS  Google Scholar 

  32. Deepan T, Basaveswara Rao MV, Dhanaraju MD (2017) Development of validated stability indicating assay method for simultaneous estimation of metformin and dapagliflozin by RP-HPLC. Eur J Appl Sci 9:189–199

    CAS  Google Scholar 

  33. Deepan T, Dhanaraj MD (2018) Stability indicating HPLC method for the simultaneous determination of dapagliflozin and saxagliptin in bulk and tablet dosage form. Curr Issues Pharm Med Sci 31:39–43

    CAS  Google Scholar 

  34. Gaware D, Patil RN, Harole M (2015) A validated stability indicating RP-HPLC method for simultaneous determination of metformin and canagliflozin in pharmaceutical formulation. World J Pharm Pharm Sci 4:631–640

    CAS  Google Scholar 

  35. Reddy NP, Chevela NT (2015) RP-HPLC method development and validation for the simultaneous estimation of metformin and canagliflozin in tablet dosage form. Int J Pharm Sci 5:1155–1159

    Google Scholar 

  36. Kommineni V, Chowdary KPR, Prasad SVUM (2017) Development of a new stability indicating RP-HPLC method for simultaneous estimation of metformin hydrochloride and canagliflozin and its validation as per ICH guidelines. IJPS 8:3427–3435

    CAS  Google Scholar 

  37. Kommineni V, Chowdary KPR, Prasad SVUM (2017) Development and validation of a new RP-HPLC method for simultaneous estimation of metformin hydrochloride and canagliflozin and its comparison with the reported methods. World J Pharm Pharm Sci 6:696–713

    CAS  Google Scholar 

  38. Panigrahy UP, Kumar Reddy AS (2015) A novel validated RP-HPLC-DAD method for the simultaneous estimation of metformin hydrochloride and canagliflozin in bulk and pharmaceutical tablet dosage form with forced degradation studies. Orient J Chem 31:1489–1507

    CAS  Google Scholar 

  39. Dsouza S, Krishna M, Sushmitha GS, Vasantharaju SG (2016) Stability indicating assay method development and validation to simultaneously estimate metformin hydrochloride and canagliflozin by RP-HPLC. Curr Trends Biotechnol Pharm 10:334–342

    CAS  Google Scholar 

  40. Khalil GA, Salama I, Gomaa MS, Helal MA (2018) Validated RP-HPLC method for simultaneous determination of canagliflozin, dapagliflozin, empagliflozin and Metformin. IJPCBS 8:1–13

    CAS  Google Scholar 

  41. Hassib ST, Taha EA, Elkady EF, Barakat GH (2019) Validated liquid chromatographic method for the determination of (canagliflozin, dapagliflozin or empagliflozin) and metformin in the presence of (1-cyanoguanidine). J Chromatogr Sci 57(8):697–707

    CAS  Google Scholar 

  42. Mabrouk MM, Soliman SM, El-Agizy HM, Mansour FR (2020) Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD. J Chromatogr B Anal Technol Biomed Life Sci 1136:121932

    CAS  Google Scholar 

  43. Lam YH, Leung MT, Ching CK, Mak TWL (2020) Simultaneous detection of 24 oral antidiabetic drugs and their metabolites in urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 1141:122020

    CAS  Google Scholar 

  44. Shah PA, Shrivastav PS, Sharma V, Yadav MS (2019) Challenges in simultaneous extraction and chromatographic separation of metformin and three SGLT-2 inhibitors in human plasma using LC-MS/MS. J Pharm Biomed Anal 175:112790

    CAS  Google Scholar 

  45. Dias BCL, Fachi MM, de Campos ML, Degaut FLD, Peccinini RG, Pontarolo R (2019) A new HPLC–MS/MS method for the simultaneous quantification of SGLT2 inhibitors and metformin in plasma and its application to a pharmacokinetic study in healthy volunteers. Biomed Chromatogr 33:e4663

    CAS  Google Scholar 

  46. ICH, Validation of Analytical Procedures (2005) Text and methodology, Q2 (R1), international conference on harmonisation

  47. Validation of Compendial Procedures (2010) United State Pharmacopeia, USP 36 NF, 27 (2)

  48. FDA, Reviewer Guidance (1994) Validation of Chromatographic Methods, Center for Drug Evaluation and Research (CDER)

  49. Bliesner DM (2006) Validating chromatographic methods. Wliey, New York (ISBN: 9780470042205)

    Google Scholar 

  50. Robards K, Jackson P, Haddad P (2012) Principles and practice of modern chromatographic methods, 1st edn. Elsevier, New York (ISBN: 9780125895705)

    Google Scholar 

  51. Braithwaite A, Smith FJ (1995) Chromatographic methods, 5th edn. Kluwer Academic Publishers, New York (ISBN: 0751401587)

    Google Scholar 

  52. Chen Z-H, Wang RW, Qing FL (2012) Synthesis and biological evaluation of SGLT2 inhibitors: gem-difluoromethylenated Dapagliflozin analogs. Tetrahedron Lett 53:2171–2176

    CAS  Google Scholar 

  53. Ng WL, Li H-C, Lau K-M, Chan AKN, Lau CB-S, Shing TKM (2017) Concise and stereodivergent synthesis of carbasugars reveals unexpected structure-activity relationship (SAR) of SGLT2 inhibition. Sci Rep 7:1–9

    Google Scholar 

  54. Song K-S, Lee SH, Kim MJ, Seo HJ, Lee J, Lee S-H, Jung ME, Son EU, Lee M, Kim J, Lee J (2011) Synthesis and SAR of thiazolylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. ACS Med Chem Lett 2:182–187

    CAS  Google Scholar 

  55. Han S-Y, Liang C, Zou K, Qiao J-Q, Lian H-Z, Ge X (2012) Influence of variation in mobile phase pH and solute pKa with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Talanta 101:64–70

    CAS  Google Scholar 

  56. Davies NH, Euerby MR, McCalley DV (2006) Study of overload for basic compounds in reversed-phase high performance liquid chromatography as a function of mobile phase pH. J Chromatogr A 1119:11–19

    CAS  Google Scholar 

  57. Lide DR (2004) CRC handbook of chemistry and physics: a ready-reference of chemical and physical data, (National Institute of Standards and Technology), 85th edn. CRC Press LLC, Boca Raton (ISBN 0-8493-0485-7)

    Google Scholar 

  58. Subirats X, Bosch E, Roses M (2006) Retention of ionisable compounds on high-performance liquid chromatography. J Chromatogr A 1121:170–177

    CAS  Google Scholar 

  59. Harris DC (2010) Quantitative chemical analysis. W. H Freeman and Company, New York (ISBN-13: 978-1-4292-1815-3)

    Google Scholar 

  60. Urbansky ET, Schock MR (2000) Understanding, deriving, and computing buffer capacity. J Chem Ed 77:1640–1644

    CAS  Google Scholar 

  61. Enhanced Diode Array Detector Sensitivity and Automated Peak Purity Control, Technical Note, (1997) Agilent Technologies, Publication Number 5965–5900E

  62. Flexar PDA Plus Detector, Technical Note, (2013) PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA, Publication number 010942_03

  63. Sievert HJP, Drouen ACJH (1993) Spectral matching and peak purity” in diode-array detection in high-performance liquid chromatography. Marcel Dekker, New York, pp 51–125

    Google Scholar 

  64. Fabre H, Bris AL, Blanchin MD (1995) Evaluation of different techniques for peak purity assessment on a diode-array detector in liquid chromatography. J Chromatogr A 697:81–88

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Sharif.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, S., Bashir, R., Adnan, A. et al. Stability Indicating, pH and pKa Dependent HPLC–DAD Method for the Simultaneous Determination of Weakly Ionizable Empagliflozin, Dapagliflozin and Canagliflozin in Pharmaceutical Formulations. Chromatographia 83, 1453–1465 (2020). https://doi.org/10.1007/s10337-020-03962-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03962-4

Keywords

Navigation