Skip to main content
Log in

Concomitant analysis of dasatinib and curcuminoids in a pluronic-based nanoparticle formulation using a novel HPLC method

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel HPLC method was developed and validated to simultaneously determine curcuminoids and dasatinib in a new dosage form. Excellent separation was achieved for a curcuminoids mixture and dasatinib with a ZORBAX Eclipse Plus Phenyl–Hexyl column (4.6 × 250 mm, 5 µm) and a mobile phase consisting of aqueous solution (0.2% acetic acid and 0.1% trifluoroacetic acid with the pH adjusted to 3.5) and acetonitrile with a gradient elution at a flow rate of 1 mL/min. The separated peaks were detected at 325 nm for dasatinib and 420 nm for the curcuminoids mixture. The mixture was separated in less than 20 min. The retention times were 6.5 min, 16.4 min, 17.5 min, and 18.4 min for dasatinib, bisdesmethoxycurcumin, desmethoxycurcumin, and curcumin, respectively. The linear range for all compounds was 0.5–140 µg/mL with a limit of detection of 0.10–0.50 µg/mL. The method was validated according to the International Council for Harmonization guidelines and was shown to be sensitive, fast, robust, specific, and accurate. The developed method was successfully applied to determine dasatinib and curcuminoids in a nanoparticle preparation with good accuracy and precision. The method may be utilized to conduct in vitro studies for new pharmaceutical formulations containing a similar combination of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sun W, Sanderson PE, Zheng W (2016) Drug combination therapy increases successful drug repositioning. Drug Discov Today 21(7):1189–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  2. FDA, U. Analytical procedures and methods validation for drugs and biologics guidance for industry. 2015; 18]. Available from: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf.

  3. Coskun O (2016) Separation techniques: chromatography. North Clin Istanb 3(2):156–160

    PubMed  PubMed Central  Google Scholar 

  4. Selvam C et al (2019) Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci 239:117032

    CAS  PubMed  Google Scholar 

  5. Kotra VSR, Satyabanta L, Goswami TK (2019) A critical review of analytical methods for determination of curcuminoids in turmeric. J Food Sci Technol 56(12):5153–5166

    CAS  PubMed  Google Scholar 

  6. Rodrigues FC, Anil Kumar NV, Thakur G (2019) Developments in the anticancer activity of structurally modified curcumin: an up-to-date review. Eur J Med Chem 177:76–104

    CAS  PubMed  Google Scholar 

  7. Perkins S et al (2002) Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomark Prev 11(6):535–540

    CAS  Google Scholar 

  8. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218

    CAS  PubMed  Google Scholar 

  9. Shehzad A, Wahid F, Lee YS (2010) Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm 343(9):489–499

    CAS  Google Scholar 

  10. Hatcher H et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65(11):1631–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Naksuriya O et al (2014) Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35(10):3365–3383

    CAS  PubMed  Google Scholar 

  12. Sharma RA et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854. https://doi.org/10.1158/1078-0432.CCR-04-0744

    Article  CAS  PubMed  Google Scholar 

  13. Araujo J, Logothetis C (2010) Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 36(6):492–500

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim LC, Rix U, Haura EB (2010) Dasatinib in solid tumors. Expert Opin Investig Drugs 19(3):415–425

    CAS  PubMed  Google Scholar 

  15. Serrels A et al (2006) Identification of potential biomarkers for measuring inhibition of Src kinase activity in colon cancer cells following treatment with dasatinib. Mol Cancer Ther 5(12):3014–3022

    CAS  PubMed  Google Scholar 

  16. Nautiyal J et al (2009) Src inhibitor dasatinib inhibits growth of breast cancer cells by modulating EGFR signaling. Cancer Lett 283(2):143–151

    CAS  PubMed  Google Scholar 

  17. Wang B-L et al (2013) Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomed 8:3521

    Google Scholar 

  18. Hosseinzadeh L et al (2011) Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 49(5):1102–1109

    CAS  PubMed  Google Scholar 

  19. Huang Y-F et al (2017) Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway. Oncotarget 8(25):40264

    PubMed  PubMed Central  Google Scholar 

  20. Chen P et al (2015) Curcumin reverses cisplatin resistance in cisplatin-resistant lung caner cells by inhibiting FA/BRCA pathway. Tumor Biology 36(5):3591–3599

    CAS  PubMed  Google Scholar 

  21. Zhang J et al (2017) Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol 79(3):479–487

    CAS  PubMed  Google Scholar 

  22. Zhao M-D et al (2019) Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomed 14:9453

    CAS  Google Scholar 

  23. Tian N, Shangguan W, Zhou Z, yao Y, Fan C, Cai L, (2019) Lin28b is involved in curcumin-reversed paclitaxel chemoresistance and associated with poor prognosis in hepatocellular carcinoma. J Cancer 10(24):6074–6087

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Abd Wahab NA et al (2020) Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients 12(3):679

    PubMed Central  Google Scholar 

  25. Ismail NI et al (2019) Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci 20(10):2454

    PubMed Central  Google Scholar 

  26. He YC et al (2019) Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-mediated mechanism. Molecules 24(22):4179

    CAS  PubMed Central  Google Scholar 

  27. Sun A et al (2009) Curcumin analog cytotoxicity against breast cancer cells: exploitation of a redox-dependent mechanism. Bioorg Med Chem Lett 19(23):6627–6631

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carolina Alves R et al (2019) A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem 49(2):138–149

    CAS  PubMed  Google Scholar 

  29. Gonzalez AG et al (2017) Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis. J Sep Sci 40(2):400–406

    CAS  PubMed  Google Scholar 

  30. Agarwal S et al (2019) Development of Chromatographic Method for Determination of Impurities in Solid Dispersion of Dasatinib. Brazi J Anal Chem 5(21):19–29

    Google Scholar 

  31. Gugulothu DB, Patravale VB (2012) A new stability-indicating hplc method for simultaneous determination of curcumin and celecoxib at single wavelength: an application to nanoparticulate formulation. Pharm Anal Acta 03(04):157

    CAS  Google Scholar 

  32. Horská J et al (2014) CZE separation of new drugs for treatment of leukemia. Chromatographia 77(21–22):1477–1482

    Google Scholar 

  33. Korany MA et al (2017) A validated stability-indicating HPLC method for simultaneous determination of Silymarin and Curcumin in various dosage forms. Arab J Chem 10:S1711–S1725

    CAS  Google Scholar 

  34. Vieira E, Lemos-Senna E (2020) Application of a new validated HPLC-PDA method for simultaneous determination of curcumin and melatonin in hyaluronic acid-coated nanoemulsions. J Brazil Chem Soc 31(3):467–475

    Google Scholar 

  35. Ruan L et al (2015) A sensitive and microscale method for drug screening combining affinity probes and single molecule fluorescence correlation spectroscopy. Analyst 140(4):1207–1214

    CAS  PubMed  Google Scholar 

  36. Jesus CSH, Diculescu VC (2015) Redox mechanism, spectrophotometrical characterisation and voltammetric determination in serum samples of kinases inhibitor and anticancer drug dasatinib. J Electroanal Chem 752:47–53

    CAS  Google Scholar 

  37. Kalambate PK et al (2019) Mesoporous Pd@Pt core–shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib. Anal Methods 11(4):443–453

    CAS  Google Scholar 

  38. Xu M et al (2018) Screening of break point cluster region Abelson tyrosine kinase inhibitors by capillary electrophoresis. J Chromatogr A 1537:128–134

    CAS  PubMed  Google Scholar 

  39. Kharat S, Namdeo A, Mehta P (2018) Development and validation of HPTLC method for simultaneous estimation of curcumin and galangin in polyherbal capsule dosage form. J Taibah Uni Sci 11(5):775–781

    Google Scholar 

  40. Mhaske DV, Dhaneshwar SR (2007) Stability indicating HPTLC and LC determination of dasatinib in pharmaceutical dosage form. Chromatographia 66(1–2):95–102

    CAS  Google Scholar 

  41. Peram MR et al (2017) Stability studies of pure and mixture form of curcuminoids by reverse phase-HPLC method under various experimental stress conditions. Food Sci Biotechnol 26(3):591–602

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu H et al (2018) Multiplexed quantitative MALDI MS approach for assessing activity and inhibition of protein kinases based on postenrichment dephosphorylation of phosphopeptides by metal-organic framework-templated porous CeO2. Anal Chem 90(16):9859–9867

    CAS  PubMed  Google Scholar 

  43. Yi R et al (2019) Identification of ligands from natural products as inhibitors of glutathione S-transferases using enzyme immobilized mesoporous magnetic beads with high-performance liquid chromatography plus quadrupole time-of-flight mass spectrometry and molecular docking. J Sep Sci 42(24):3611–3620

    CAS  PubMed  Google Scholar 

  44. Sun QX et al (2019) Single cell analysis for elucidating cellular uptake and transport of cobalt curcumin complex with detection by time-resolved ICPMS. Anal Chim Acta 1066:13–20

    CAS  PubMed  Google Scholar 

  45. Sahu A et al (2011) Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J Biomater Appl 25(6):619–639

    CAS  PubMed  Google Scholar 

  46. Akbar MU et al (2018) Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech 19(6):2719–2739

    CAS  PubMed  Google Scholar 

  47. Roy S, Quinones R, Matzger AJ (2012) Structural and physicochemical aspects of dasatinib hydrate and anhydrate phases. Cryst Growth Des 12(4):2122–2126

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Poole, C.F. and N. Lenca, Chapter 4—Reversed-phase liquid chromatography, in Liquid Chromatography (Second Edition), S. Fanali, et al., Editors. 2017, Elsevier. p. 91–123.

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by King Abdulaziz City for Science and Technology (KACST), Grant No. 2-17-03-007-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Alarjah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarjah, M.A., Shahin, M.H., Al-Azzah, F. et al. Concomitant analysis of dasatinib and curcuminoids in a pluronic-based nanoparticle formulation using a novel HPLC method. Chromatographia 83, 1355–1370 (2020). https://doi.org/10.1007/s10337-020-03956-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03956-2

Keywords

Navigation