Skip to main content
Log in

Experiments, Correlation, and Modeling of Curcumin Solubility in Subcritical Water (Water/Ethanol)

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The solubility of curcumin in the pure water subcritical and water–ethanol solution (water + (5–10) % (v/v) ethanol) subcritical is investigated for the first time. The design approach taken from this study is the response surface methodology due to the Box Behnken. The experiments were performed in the temperature range of (90–150) °C, (0–10) volumetric percent of ethanol and the flow rate of (0.2–0.8) ml/min. As the pressure effect is ignored in the subcritical conditions, the pressure is constant in 2 MP in the experiments. All analyses were carried out employing the high-performance liquid chromatography apparatus. The curcumin solubility data were correlated with the dielectric constant of solvent mixture. Curcumin solubility modeling in subcritical conditions was done due to cubic-plus-association equation of state. The present study indicated that the rise in temperature and ethanol percentage cause an increase in curcumin solubility. Other important finding was by increasing the flow rate, curcumin solubility rate increased with a very mild slope. The optimum conditions for the curcumin solubility were in the water flow rate of 0.8 ml/min, 10% (v/v) of ethanol, and the temperature of 150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Joe B, Vijaykumar M, Lokesh B (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44(2):97–111

    CAS  PubMed  Google Scholar 

  2. Kiamahalleh MV, Najafpour-Darzi G, Rahimnejad M, Moghadamnia AA, Kiamahalleh MV (2016) High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). J Chromatogr B 1022:191–198

    Google Scholar 

  3. Kimthet C, Wahyudiono, Kanda H, Goto M (2017) Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide. In: AIP Conference Proceedings, 2017. vol 1. AIP Publishing, p 100001. https://doi.org/10.1063/1.4982318

  4. Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895

    CAS  PubMed  Google Scholar 

  5. Nasri H, Sahinfard N, Rafieian M, Rafieian S, Shirzad M, Rafieian-kopaei M (2014) Turmeric: A spice with multifunctional medicinal properties. J HerbMed Pharmacol 3 (1):5–8

    CAS  Google Scholar 

  6. Yen F-L, Wu T-H, Tzeng C-W, Lin L-T, Lin C-C (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agricul Food Chem 58(12):7376–7382

    CAS  Google Scholar 

  7. Aggarwal BB, Bhatt ID, Ichikawa H, Ahn KS, Sethi G, Sandur SK, Natarajan C, Seeram N, Shishodia S (2006) 10 Curcumin—Biological and Medicinal Properties. In: Turmeric: The genus Curcuma, CRC Press, 2007, p 297

  8. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 32(6):1053–1064

    CAS  PubMed  Google Scholar 

  9. Giufrida WM, Favareto R, Cabral VF, Meireles MAA, Cardozo-Filho L, Corazza ML (2010) High-pressure vapor-liquid equilibrium data for ternary systems CO2+ organic solvent+ curcumin. Open Chem Eng J 4:3–10

    CAS  Google Scholar 

  10. Yadav RP, Tarun G (2017) Versatility of turmeric: A review the golden spice of life. J Pharmac Phytochem 6(1):41–46

    Google Scholar 

  11. Mottahedin P, Haghighi Asl A, Khajenoori M (2017) Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology. J Food Process Preserv 41(4):e13095

  12. Khalil OAK, de Faria Oliveira OMM, Vellosa JCR, de Quadros AU, Dalposso LM, Karam TK, Mainardes RM, Khalil NM (2012) Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chem 133(3):1001–1005

    CAS  Google Scholar 

  13. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 186864(2014). https://doi.org/10.1155/2014/186864

  14. Basnet P, Skalko-Basnet N (2011) Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16(6):4567–4598

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gómez-Estaca J, Balaguer M, López-Carballo G, Gavara R, Hernández-Muñoz P (2017) Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids 70:313–320

    Google Scholar 

  16. Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11(3):495–510

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Prabhakar SS (2016) Effects of curcumin in experimental diabetic nephropathy. J Invest Med 65(1):1–6

  18. Hamid KMA, Hussein OA (2015) Histological study of the possible protective effect of curcumin on diabetic cardiomyopathy in experimental diabetic rats. Egyptian J Histol 38(3):452–463

    Google Scholar 

  19. Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, Sahebkar A (2017) Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 25(1):25–31

    CAS  PubMed  Google Scholar 

  20. Mottahedin P, Asl AH, Lotfollahi MN (2017) Experimental and modeling investigation on the solubility of β-carotene in pure and ethanol-modified subcritical water. J Mol Liq 237:257–265

    CAS  Google Scholar 

  21. Doctor N, Parker G, Vang K, Smith M, Kayan B, Yang Y (2020) Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions. Molecules 25(5):1061

    CAS  PubMed Central  Google Scholar 

  22. Doctor N, Yang Y (2018) Separation and Analysis of Aspirin and Metformin HCl Using Green Subcritical Water Chromatography. Molecules 23(9):2258

    PubMed Central  Google Scholar 

  23. Pu Y, Cai F, Wang D, Li Y, Chen X, Maimouna AG, Wu Z, Wen X, Chen J-F, Foster NR (2017) Solubility of Bicalutamide, Megestrol Acetate, Prednisolone, Beclomethasone Dipropionate, and Clarithromycin in Subcritical Water at Different Temperatures from 383.15 to 443.15 K. J Chem Eng Data 62(3):1139–1145

    CAS  Google Scholar 

  24. He L, Zhang X, Xu H, Xu C, Yuan F, Knez Ž, Novak Z, Gao Y (2012) Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food Bioproducts Process 90(2):215–223

    CAS  Google Scholar 

  25. Carr AG, Mammucari R, Foster N (2011) A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem Eng J 172(1):1–17

    CAS  Google Scholar 

  26. Karásek P, Planeta J, Roth M (2006) Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water at temperatures from 313 K to the melting point. J Chem Eng Data 51(2):616–622

    Google Scholar 

  27. Carr AG, Branch A, Mammucari R, Foster NR (2010) The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. J Supercrit Fluids 55(1):37–42

    CAS  Google Scholar 

  28. Bei K, Zhang C, Wang J, Li K, Lyu J, Zhao J, Chen J, Chou I-M, Pan Z (2016) Solubility and dissolution mechanism of 4-chlorotoluene in subcritical water investigated in a fused silica capillary reactor by in situ Raman spectroscopy. Fluid Phase Equilib 425:93–97

    CAS  Google Scholar 

  29. Atashgar K (2018) Introduction to: Design Of Experiment And Tguchi Method (DOC)

  30. Folas GK, Kontogeorgis GM, Michelsen ML, Stenby EH (2006) Application of the cubic-plus-association (CPA) equation of state to complex mixtures with aromatic hydrocarbons. Ind Eng Chem Res 45(4):1527–1538

    CAS  Google Scholar 

  31. Folas GK, Gabrielsen J, Michelsen ML, Stenby EH, Kontogeorgis GM (2005) Application of the cubic-plus-association (CPA) equation of state to cross-associating systems. Ind Eng Chem Res 44(10):3823–3833

    CAS  Google Scholar 

  32. Kontogeorgis GM, Voutsas EC, Yakoumis IV, Tassios DP (1996) An equation of state for associating fluids. Ind Eng Chem Res 35(11):4310–4318

    CAS  Google Scholar 

  33. Oliveira M, Teles A, Queimada A, Coutinho J (2009) Phase equilibria of glycerol containing systems and their description with the Cubic-Plus-Association (CPA) Equation of State. Fluid Phase Equilib 280(1):22–29

    CAS  Google Scholar 

  34. Yakoumis IV, Kontogeorgis GM, Voutsas EC, Tassios DP (1997) Vapor-liquid equilibria for alcoholhydrocarbon systems using the CPA Equation of state. Fluid Phase Equilib 130(1):31–47

    CAS  Google Scholar 

  35. Mottahedin P, Asl AH, Lotfollahi MN (2017) Prediction the Solubility of Polycyclic Aromatic Hydrocarbons in Subcritical Water by Using the CPA EOS. J Sol Chem 46(12):2191–2203

  36. Srinivas K, King JW, Howard LR, Monrad JK (2010) Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J Food Eng 100(2):208–218

    CAS  Google Scholar 

  37. Chen Z, Xia Y, Liao S, Huang Y, Li Y, He Y, Tong Z, Li B (2014) Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem 155:81–86

    CAS  PubMed  Google Scholar 

  38. Teoh WH, Vieira de Melo SAB, Mammucari R, Foster NR (2014) Solubility and Solubility Modeling of Polycyclic Aromatic Hydrocarbons in Subcritical Ethanol and Water Mixtures. Industrial & Engineering Chemistry Research 53(24):10238–10248. https://doi.org/10.1021/ie501276e

  39. Paviani LC, Chiari MR, Crespo TR, Cabral FA (2013) Thermodynamic Modelling of Phase Equilibrium Behavior of Curcumin-CO2-Ethanol. In: III Iberoamerican Conference on Supercritical Fluids

  40. Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH (2006) Ten years with the CPA (Cubic-Plus-Association) equation of state Part Cross-associating and multicomponent systems. Indust Eng Chem Res 45(14):4869–4878

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haghighi Asl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Haghighi Asl, A. & Mottahedin, P. Experiments, Correlation, and Modeling of Curcumin Solubility in Subcritical Water (Water/Ethanol). Chromatographia 83, 1293–1305 (2020). https://doi.org/10.1007/s10337-020-03946-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03946-4

Keywords

Navigation