Skip to main content

Advertisement

Log in

Microfluidic Paper-based Analytical Devices in Clinical Applications

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Microfluidic paper-based analytical devices (µPADs) take the paper as a base material and integrate nanoscale microchannel on it for multiple detections. Its unique properties like low cost, portability, simple operation, and easy to save make it better than the traditional microfluidic chips. While designed originally for point-of-care medical diagnostics, µPADs have attracted the attention of many researchers in the fields of environmental monitoring, water quality, and food safety. The novelty of this paper is to present a detailed overview of µPADs for clinical applications. Firstly, a brief introduction to production methods, characteristics, and applications of these methods have been given. Secondly, the basic implementation, working principles, and corresponding performance of detection methods of clinical devices have been discussed, which enable the µPADs to detect biomarkers, human cells, bacteria, and viruses in a short time. Lastly, the factors that limit µPADs commercial applications, and their future research directions have also been briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) Science 282(5388):484–487

    CAS  PubMed  Google Scholar 

  2. Pires N, Dong T, Hanke U, Hoivik N (2014) Sensors-Basel 14(8):15458–15479

    PubMed  PubMed Central  Google Scholar 

  3. Shi H, Nie K, Dong B, Long M, Xu H, Liu Z (2019) Chem Eng J 361:635–650

    CAS  Google Scholar 

  4. Zuo P, Li X, Dominguez DC, Ye B (2013) Lab Chip 13(19):3921–3928

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dou M, Dominguez DC, Li X, Sanchez J, Scott G (2014) Anal Chem 86(15):7978–7986

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang F, Qiao Y, Duan M, Ju A, Lu N, Li J, Tu J, Lu Z (2018) RSC Adv 8(16):8732–8738

    CAS  Google Scholar 

  7. Elliott I, Mabey D, Peeling RW, Newton PN, Smit PW (2014) The Am J Trop Med Hyg 90(2):195–210

    PubMed  Google Scholar 

  8. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Anal Chem 82(1):3–10

    CAS  PubMed  Google Scholar 

  9. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Angew Chem Int Ed 46(8):1318–1320

    CAS  Google Scholar 

  10. Ma S, Tang Y, Liu J, Wu J (2014) Talanta 120(120):135–140

    CAS  PubMed  Google Scholar 

  11. Tu SP, Yoon JY (2015) IEEE Sens J 15(3):1902–1907

    Google Scholar 

  12. Han KN, Choi J, Kwon J (2017) Sci Rep-UK 7(1).

  13. Yang N, Wang P, Xue CY, Sun J, Mao HP, Oppong PK (2018) J Food Process Eng 41(8):1–10

    Google Scholar 

  14. Badawy MEI, El-Aswad AF (2014) Int J Anal Chem 2014:1–8

    Google Scholar 

  15. Ha N, Jung I, Kim S, Kim A, Yoon M (2017) Process Biochem 62:161–168

    CAS  Google Scholar 

  16. Christopher TSPD, Fronczek F, Yoon AJ (2014) RSC Adv 4(22):11103–11110

    Google Scholar 

  17. Pisamayarom K, Suriyasomboon A, Chaumpluk P (2017) Biosensors 7(4):56–70

    PubMed Central  Google Scholar 

  18. Chen A, Liu R, Peng X, Chen Q, Wu J (2017) ACS Appl Mater Inter 9(42):37191–37200

    CAS  Google Scholar 

  19. Jia H, Wang J, Zhang X, Wang Y (2014) ACS Macro Lett 3(1):86–90

    CAS  Google Scholar 

  20. Cate DM, Nanthasurasak P, Riwkulkajorn P (2014) Ann Occup Hyg 58(4):413–423

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dungchai W, Chailapakul O, Henry CS (2010) Anal Chim Acta 674(2):227–233

    CAS  PubMed  Google Scholar 

  22. Dungchai W, Chailapakul O, Henry CS (2009) Anal Chem 81(14):5821–5826

    CAS  PubMed  Google Scholar 

  23. Carrilho E, Martinez AW, Whitesides GM (2009) Anal Chem 81(16):7091–7095

    CAS  PubMed  Google Scholar 

  24. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Lab Chip 10(4):477–483

    CAS  PubMed  Google Scholar 

  25. Mahato K, Srivastava A, Chandra P (2017) Biosens Bioelectron 96:246–259

    CAS  PubMed  Google Scholar 

  26. Rattanarat P, Dungchai W, Cate DM, Siangproh W, Volckens J, Chailapakul O, Henry CS (2013) Anal Chim Acta 800:50–55

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia Y, Si J, Li Z (2015) Biosens Bioelectron 77:774–789

    PubMed  Google Scholar 

  28. Jiang Y, Ma C, Hu X et al (2014) Progress Chem Beijing 26(1):167–177

    CAS  Google Scholar 

  29. Chung S, Jennings CM, Yoon JY (2019) Chemistry 25(57):13070–13077

    CAS  PubMed  Google Scholar 

  30. Chinnadayyala SR, Park J, Le HTN et al (2018) Biosens Bioelectron 126:68–81

    PubMed  Google Scholar 

  31. Fu L, Wang Y (2018) Trac-Trends Anal Chem 107:196–211

    CAS  Google Scholar 

  32. Gross EM, Durant HE, Hipp KN et al (2017) ChemElectroChem 4(7):1594–1603

    CAS  Google Scholar 

  33. Kung CT, Hou CY, Wang YN (2019) Sens Actuators B Chem, p 301.

  34. Si-Jia L, Ji-Kai M, Chen G et al (2019) Chin J Anal Chem 47(12):1878–1886

    Google Scholar 

  35. Lim H, Jafry AT, Lee J (2019) Molecules 24(16).

  36. Akyazi T, Basabe-Desmonts L, Benito-Lopez F (2017) Anal Chim Acta 1001:1–17

    PubMed  Google Scholar 

  37. Lim WY, Goh BT, Khor SM (2017) J Chromatogr B 1060:424–442

    CAS  Google Scholar 

  38. Almeida MIGS, Jayawardane BM, Kolev SD et al (2017) Talanta 177:176–190

    PubMed  Google Scholar 

  39. Sher M, Zhuang R, Demirci U et al (2017) Expert Rev Mol Diagn 17(4):351–366

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang R, Tseng C, Ju W, Wang H, Fu L (2018) Chem Eng J 352:241–246

    CAS  Google Scholar 

  41. Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RM, Soh S, Whitesides GM (2013) Lab Chip 13(15):2922–2930

    CAS  PubMed  Google Scholar 

  42. Fu L, Wang Y (2018) TrAC Trends Anal Chem 107:196–211

    CAS  Google Scholar 

  43. He Y, Wu Y, Fu J, Wu W (2015) RSC Adv 5(95):7819–78127

    Google Scholar 

  44. Carrilho E, Phillips ST, Vella SJ, Martinez AW, Whitesides GM (2009) Anal Chem 81(15):5990–5998

    CAS  PubMed  Google Scholar 

  45. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Angew Chem 127(18):5384–5401

    Google Scholar 

  46. Li X, Tian J, Nguyen T, Shen W (2008) Anal Chem 80(23):9131–9134

    CAS  PubMed  Google Scholar 

  47. Dou M, Sanjay ST, Benhabib M, Xu F, Li X (2015) Talanta 145:43–54

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi W, Jiang L, Lu Y (2009) Electrophoresis 30(9):1497–1500

    PubMed  Google Scholar 

  49. Wang J, Monton MRN, Zhang X et al (2014) Lab Chip 14(4):691–695

    CAS  PubMed  Google Scholar 

  50. Guo X, Guo Y, Liu W (2019) Spectrochim Acta Part A Mol Biomol Spectrosc, p 223.

  51. Cardoso TM, de Souza G, Fabrício R, Garcia PT et al (2017) Anal Chim Acta 974:63–68

    CAS  PubMed  Google Scholar 

  52. Lin D, Li B, Qi J (2020) Sens Actuators B Chem, p 303.

  53. Yetisen AK, Akram MS, Lowe CR (2013) Lab Chip 13(12):2210–2251

    CAS  PubMed  Google Scholar 

  54. Das P, Krull UJ (2017) Analyst 142(17):3132–3135

    CAS  PubMed  Google Scholar 

  55. Liang L, Su M, Li L, Lan F, Yang G, Ge S, Yu J, Song X (2016) Sens Actuators B Chem 229:347–354

    CAS  Google Scholar 

  56. Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J (2013) Anal Methods-UK 5(5):1328

    CAS  Google Scholar 

  57. Hasan SMA, Prasad A (2018) Analyst 144(1):197–205

    PubMed  Google Scholar 

  58. Li H, Fang X, Cao H, Kong J (2016) Biosens Bioelectron 80:79–83

    CAS  PubMed  Google Scholar 

  59. Rodriguez NM, Linnes JC, Fan A, Ellenson CK, Pollock NR, Klapperich CM (2015) Anal Chem 87(15):7872–7879

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Z, Ma X, Jia M, Li B, Rong J, Yang X (2019) Analyst 144(4):1282–1291

    CAS  PubMed  Google Scholar 

  61. Jagirdar A, Shetty P, Satti S, Garg S, Paul D (2015) Anal Methods-UK 7(4):1293–1299

    CAS  Google Scholar 

  62. Noor MO, Hrovat D, Moazami-Goudarzi M, Espie GS, Krull UJ (2015) Anal Chim Acta 885:156–165

    CAS  PubMed  Google Scholar 

  63. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Anal Chim Acta 970:1–22

    CAS  PubMed  Google Scholar 

  64. Li Z, You M, Bai Y, Gong Y, Xu F (2019) Small Methods, p 1900459.

  65. Dong M, Wu J, Ma Z, Peretz-Soroka H, Zhang M, Komenda P, Tangri N, Liu Y, Rigatto C, Lin F (2017) Sensors-Basel 17(4):684–696

    PubMed Central  Google Scholar 

  66. Lee J, Lee YJ, Ahn YJ, Choi S, Lee G (2018) Sens Actuators B Chem 256:828–834

    CAS  Google Scholar 

  67. Liu M, Huang G (2016) J Univ Sci Technol China 46(10):821–831

    Google Scholar 

  68. Ellerbee AK, Phillips ST, Siegel AC, Mirica KA, Martinez AW, Striehl P, Jain N, Prentiss M, Whitesides GM (2009) Anal Chem 81(20):8447–8452

    CAS  PubMed  Google Scholar 

  69. Määttänen A, Vanamo U, Ihalainen P, Pulkkinen P, Tenhu H, Bobacka J, Peltonen J (2013) Sens Actuators B Chem 177:153–162

    Google Scholar 

  70. Tian T, Liu H, Li L, Yu J, Ge S, Song X, Yan M (2017) Sens Actuators B Chem 251:440–445

    CAS  Google Scholar 

  71. Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O (2016) Anal Chim Acta 952:32–40

    PubMed  Google Scholar 

  72. Cao L, Fang C, Zeng R (2017) Sens Actuators B Chem 252:44–54

    CAS  Google Scholar 

  73. Ge S, Zhang Y, Zhang L, Liang L, Liu H, Yan M, Huang J, Yu J (2015) Sens Actuators B Chem 220:665–672

    CAS  Google Scholar 

  74. Akyazi T, Basabedesmonts L, Benitolopez F (2018) Anal Chim Acta 1001:1–17

    CAS  PubMed  Google Scholar 

  75. Yu J, Wang S, Ge L, Ge S (2011) Biosens Bioelectron 26(7):3284–3289

    CAS  PubMed  Google Scholar 

  76. Zhao M, Li H, Liu W, Guo Y, Chu W (2016) Biosens Bioelectron 79:581–588

    CAS  PubMed  Google Scholar 

  77. Chu W, Chen Y, Liu W, Zhao M, Li H (2017) Sens Actuators B Chem 250:324–332

    CAS  Google Scholar 

  78. Wang J, Li W, Ban L, Du W, Feng X, Liu B (2018) Sens Actuators B Cheml 254:855–862

    CAS  Google Scholar 

  79. Bhattacharyya A, Klapperich CM (2007) Biomed Microdevices 9(2):245–251

    CAS  PubMed  Google Scholar 

  80. Cheng C, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Angew Chem Int Ed 49(28):4771–4774

    CAS  Google Scholar 

  81. Messina M, Meli C, Conoci S, Petralia S (2017) Analyst 142:4629

    CAS  PubMed  Google Scholar 

  82. Kong T, Flanigan S, Weinstein M, Kalwa U, Legner C, Pandey S (2017) Lab Chip 17:3621

    CAS  PubMed  Google Scholar 

  83. Yao Y, Li H, Wang D, Liu C, Zhang C (2017) Analyst 142:3715–3724

    CAS  PubMed  Google Scholar 

  84. Zhao C, Liu X (2013). International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO).

  85. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM (2012) Anal Chem 84(6):2883–2891

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang X, Lin G, Cui G, Zhou X, Liu GL (2017) Biosens Bioelectron 90:549–557

    CAS  PubMed  Google Scholar 

  87. Berry SB, Fernandes SC, Rajaratnam A, DeChiara NS, Mace CR (2016) Lab Chip 16(19):3689–3694

    CAS  PubMed  Google Scholar 

  88. Hegener MA, Li H, Han D, Steckl AJ, Pauletti GM (2017) Biomed Microdevices 19(3).

  89. Campbell J, Balhoff J, Landwehr G, Rahman S, Vaithiyanathan M, Melvin A (2018) Int J Mol Sci 19(9):2731

    PubMed Central  Google Scholar 

  90. Horst A, Rosenbohm J, Kolluri N, Hardick J, Gaydos C, Cabodi M, Klapperich C, Linnes J (2018) Biomed Microdevices 20:1–7

    Google Scholar 

  91. Ohlsson P, Evander M, Petersson K, Mellhammar L, Lehmusvuori A, Karhunen U, Soikkeli M, Seppa T, Tuunainen E, Spangar A, von Lode P, Rantakokko-Jalava K, Otto G, Scheding S, Soukka T, Wittfooth S, Laurell T (2016) Anal Chem 88(19):9403–9411

    CAS  PubMed  Google Scholar 

  92. Scida K, Li B, Ellington AD, Crooks RM (2013) Anal Chem 85(20):9713–9720

    CAS  PubMed  Google Scholar 

  93. Beck IA, Drennan KD (2001) J Clin Microbiol 39(1):29–33

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, Connor DHO, Gehrke L, Collins JJ (2016) Cell 165(5):1255–1266

    CAS  PubMed  Google Scholar 

  95. Wang R, Qi X, Liu S, Zhao L, Lu L, Deng Y (2016) RSC Adv 6(57):52372–52376

    CAS  Google Scholar 

  96. Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Ingle A, Pundir CS (2017) Proc Technol 27:91–93

    Google Scholar 

  97. Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Ingle A, Pundir CS (2017) Biosens Bioelectron 88:249–257

    CAS  PubMed  Google Scholar 

  98. Narang J, Singhal C, Mathur A, Khanuja M, Varshney A (2017) Anal Chim Acta 980:50–57

    CAS  PubMed  Google Scholar 

  99. Koesdjojo MT, Wu Y, Boonloed A, Dunfield EM, Remcho VT (2014) Talanta 130:122–127

    CAS  PubMed  Google Scholar 

  100. Chumo B, Muluneh M, Issadore D (2013) Biomicrofluidics 7(6):64109

    CAS  PubMed  Google Scholar 

  101. Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Biosens Bioelectron 31(1):212–218

    PubMed  Google Scholar 

  102. Li S, Wang Y, Ge S, Yu J, Yan M (2015) Biosens Bioelectron 71:18–24

    CAS  PubMed  Google Scholar 

  103. Fu E, Lutz B, Kauffman P, Yager P (2010) Lab Chip 10(7):918

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E (2013) Anal Chem 85(23):11545–11552

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pandey CM, Augustine S, Kumar S, Kumar S, Nara S (2018) Biotechnol J 13(1):1–11

    Google Scholar 

  106. Shah P, Zhu X, Li CZ (2013) Expert Rev Mol Diagn 13(1):83–91

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China Grant number 31670867 and 31670961, and the Fundamental Research Funds for the Central Universities No.DUT20LAB119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Ethics declarations

Conflict of interest

Author Liu declares that he has no conflict of interest; Author Han declares that she has no conflict of interest; Author Jin declares that she has no conflict of interest; Author Geng declares that he has no conflict of interest; Author Aziz declares that he has no conflict of interest; Author Zhang declares that he has no conflict of interest.; Author Deng declares that she has no conflict of interest; Author Ren declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Jin, Y., Geng, C. et al. Microfluidic Paper-based Analytical Devices in Clinical Applications. Chromatographia 83, 693–701 (2020). https://doi.org/10.1007/s10337-020-03892-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03892-1

Keywords

Navigation