Skip to main content
Log in

New Methods to Characterize the Surface and Interface Acid–Base Properties of Some Hydrocarbons by Inverse Gas Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The thermodynamic surface and interfacial properties of some hydrocarbons used as process oils in rubber industry were determined using the inverse gas chromatography technique at infinite dilution. In this paper, four different common process oils, such as distillated aromatic extract, treated distillate aromatic extract, mildly extracted solvate, and hydro-processed naphthenic oil, were studied. An important effect of the temperature on the dispersive component of the surface energy of different hydrocarbons was proved. These hydrocarbon materials exhibit a strong dependency of their surface acid–base properties on the temperature. The specific surface enthalpy and entropy, as well as the acid–base constants KA, KD and the amphoteric constant K of hydrocarbon surfaces, strongly depend on the temperature. It was proved that the hydro-processed naphthenic oil presents the highest acidity relative to other hydrocarbon materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Santos JMRCA, Guthrie JT (2005) Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Mater Sci Eng R 50:79–107

    Google Scholar 

  2. Gamelas JAF (2013) The surface properties of cellulose and lignocellulosic materials assessed by inverse gas chromatography: a review. Cellulose 20:2675–2693

    CAS  Google Scholar 

  3. Mukhopadhyay P, Schreiber HP (1995) Aspects of acid-base interactions and use of inverse gas chromatography. Colloids Surf A 100:47–71

    CAS  Google Scholar 

  4. Gamelas JAF, Ferraz E, Rocha F (2014) An insight into the surface properties of calcined kaolinitic clays: the grinding effect. Colloids Surf A 455:49–57

    CAS  Google Scholar 

  5. Ansari DM, Price GJ (2004) Polymer chromatographic estimation of filler surface energies and correlation with photodegradation of kaolin filled polyethylene. Polymer 45:1823–1831

    CAS  Google Scholar 

  6. Fekete E, Móczo J, Pukánszky B (2004) Determination of the surface characteristics of particulate fillers by inverse gas chromatography at infinite dilution: a critical approach. J Colloid Interface Sci 269:143–152

    CAS  PubMed  Google Scholar 

  7. Ward TC, Lloyd DR, Schreiber HP (eds), Inverse gas chromatography, ACS Symp Ser. No. 391, Washington, DC, 1989.

  8. Cline D, Dalby R (2002) Predicting the quality of powders for inhalation from surface energy and area. Pharm Res 19:1274–1277

    CAS  PubMed  Google Scholar 

  9. Feeley JC, York P, Sumby BS, Dicks H (1998) Processing effects on the surface properties of α-lactose monohydrate assessed by inverse gas chromatography (IGC). Int J Pharm 172:89

    CAS  Google Scholar 

  10. M. D. Ticehurst, Characterisation of the surface energetics of pharmaceutical powders by inverse gas chromatography. University of Bradford, York, Ph.D. thesis, 1995.

  11. Buckton G (1997) Characterisation of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Adv Drug Deliv Rev 26:17–27

    CAS  PubMed  Google Scholar 

  12. Al-Ghamdi A, Al-Saigh ZY (2002) Surface and thermodynamic characterization of conducting polymers by inverse gas chromatography. I Polyaniline J Chromatogr A 969:229–243

    CAS  PubMed  Google Scholar 

  13. Que R, Wu D, Al-Saigh ZY (2007) Surface and thermodynamic characterization of conducting polymers by inverse gas chromatography: II. Polyaniline and its blend. J Chromatogr A 1146:93–102

    PubMed  Google Scholar 

  14. Boukerma K, Mičušík M, Mravčáková M, Omastova M, Vaulay MJ, Beaunier P et al (2007) Surfactant-assisted control of the surface energy and interfacial molecular interactions of polypyrrole. Coll Surf A 293:28–38

    CAS  Google Scholar 

  15. Bailey RA, Persaud KC (1998) Application of inverse gas chromatography to characterisation of a polypyrrole surface. Anal Chim Acta 363:147–156

    CAS  Google Scholar 

  16. Surana R, Randall L, Pyne A, Vemuri NM, Suryanarayanan R (2003) Determination of glass transition temperature and in situ study of the plasticizing effect of water by inverse gas chromatography. Pharm Res 20:1647–1654

    CAS  PubMed  Google Scholar 

  17. Baoli S, Qianru Z, Lina J, Yang L, Bin L (2007) Surface Lewis acid–base properties of polymers measured by inverse gas chromatography. J Chromatogr A 1149:390–393

    Google Scholar 

  18. Santos J, Gil H, Portugal A, Guthrie JT (2001) Characterisation of the surface of a cellulosic multi-purpose office paper by inverse gas chromatography. Cellulose 8:217–224

    CAS  Google Scholar 

  19. Voelkel A, Grzeskowiak T (2000) The use of solubility parameters in characterization of titanate modified silica gel by inverse gas chromatography. Chromatographia 51:608–614

    CAS  Google Scholar 

  20. Newell E, Buckton G, Butler DA, Thielmann F, Williams DR (2001) The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose. Pharm Res 18:662–666

    CAS  PubMed  Google Scholar 

  21. Kalantzopoulou FR, Artemiacti T, Bassiotis I, Katsanos NA, Plagianakos V (2001) Time separation of adsorption sites on heterogeneous surfaces by inverse gas chromatography. Chromatographia 53:315–320

    Google Scholar 

  22. Reutenauer F (2003) Thielmann, the interaction of cotton fabrics and the interaction with perfume molecules by inverse gas chromatography (IGC). J Mater Sci 38:2205–2208

    CAS  Google Scholar 

  23. Chow AHL, Tong HHY, Shekunov BY, York P (2004) Letter to editor: use of inverse gas chromatography (IGC) to determine the surface energy and surface area of powdered materials. Pharma Res 21(9):1718–1720

    CAS  Google Scholar 

  24. Askin A, Yazici DT (2008) A study of the surface analysis of some water-soluble polymers by inverse gas chromatography. Surf Interface Anal 40:1237–1241

    CAS  Google Scholar 

  25. Sreekanth TVM, Reddy KS (2007) Analysis of Solvent–Solvent Interactions in mixed isosteric solvents by inverse gas chromatography. Chromatographia 65:326–330

    Google Scholar 

  26. Yang YC, Yoon PR (2007) Examination of the surface properties of kaolinites by inverse gas chromatography: acid-base properties. Korean J Chem Eng 24:451–456. https://doi.org/10.1007/s11814-007-0078-7

    Article  CAS  Google Scholar 

  27. Przybyszewska M, Krzywania A, Zaborski M, Szynkowska MI (2009) Surface properties of zinc oxide nanoparticles studied by inverse gas chromatography. J Chromatogr A 1216(27):5284–5291

    CAS  PubMed  Google Scholar 

  28. Hamieh T, Rageul-Lescouet M, Nardin M, Haidara H, Schultz J (1997) Study of acid-base interactions between some metallic oxides and model organic molecules. Coll Surf A 125:155–161

    CAS  Google Scholar 

  29. Hamieh T, Rezzaki M, Schultz J (2001) Study of the transition temperatures and acid-base properties of poly (methyl methacrylate) adsorbed on alumina and silica, by using inverse gas chromatography technique. Coll Surf A 189(1–3):279–291

    CAS  Google Scholar 

  30. Hamieh T (2011) Determination of the transition phenomena of poly(α-n-alkyl) methacrylates adsorbed on silica by inverse gas chromatography (IGC). J Polym Res 18:1159–1168

    CAS  Google Scholar 

  31. Hamieh T (2011) New approach for the determination of acid-base properties of poly(α-n-alkyl) methacrylates adsorbed on silica by inverse gas chromatography (IGC). Chromatographia 73(7–8):709–719

    CAS  Google Scholar 

  32. Mohammadi-Jam S, Waters KE (2014) Inverse gas chromatography applications: a review. Adv Coll Interf Sci 212:21–44

    CAS  Google Scholar 

  33. Saint Flour C, Papirer E (1982) Gas-solid chromatography A method of measuring surface free energy characteristics of short glass fibers. 1. Through adsorption isotherms. Ind Eng Chem Prod Res Dev 21:337–341

    CAS  Google Scholar 

  34. Saint Flour C, Papirer E (1982) Gas-solid chromatography: method of measuring surface free energy characteristics of short fibers. 2. Through retention volumes measured near zero surface coverage. Ind Eng Chem Prod Res Dev 21:666–669

    CAS  Google Scholar 

  35. Hamieh T, Toufaily T, Mouneimné AB (2011) Effect of the tacticity of PMMA adsorbed on alumina and silica on the specific entropy change of polymer by inverse gas chromatography. Chromatographia 73(1–2):99–107

    CAS  Google Scholar 

  36. Hamieh T, Schultz J (2002) New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution. J Chromatogr A 969(1–2):17–47

    CAS  PubMed  Google Scholar 

  37. Conder JR, Young CL (1979) Physical measurements by gas chromatography. Wiley, New York

    Google Scholar 

  38. Van Alsten JG, Sauer BB, Walsh J (1992) Polymer dynamics at the melt/solid interface: experimental evidence of reduced center of mass mobility. Macromolecules 25:4046–4048

    Google Scholar 

  39. Siffert B, Kuczinski J, Papirer E (1990) Relationship between electrical charge and flocculation of heavy oil distillation residues in organic medium. J Coll Interf Sci 135(1):107–117

    CAS  Google Scholar 

  40. Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon fibre-epoxy composites. J Adhes 23(1):45–60

    CAS  Google Scholar 

  41. Ansari DM, Price GJ (2004) Correlation of mechanical properties of clay filled polyamide mouldings with chromatographically measured surface energies. Polymer 45:3663–3670

    CAS  Google Scholar 

  42. Przybyszewska M, Krzywania A, Zaborski M, Szynkowska MI (2009) Surface properties of zinc oxide nanoparticles studied by inverse gas chromatography. J Chromatogr A 1216:5284–5291

    CAS  PubMed  Google Scholar 

  43. James AT, Martin JP (1952) Gas-liquid partition chromatography: the separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem 50:679–690

    CAS  Google Scholar 

  44. Gutmann V (1978) The donor-acceptor approach to molecular interactions. Plenum, New York

    Google Scholar 

  45. Hamieh T, Rageul-Lescouet M, Nardin M, Rezzaki M, Schultz J (1997) Etude des interactions spécifiques entre certains oxydes métalliques et des molécules organiques modèles. J Chim Phys 94:503–524

    CAS  Google Scholar 

  46. Riddle FL, Fowkes FM (1990) Spectral shifts in acid-base chemistry. Van der Waals contributions to acceptor numbers, spectral shifts in acid-base chemistry. 1. Van der Waals contributions to acceptor numbers. J Am Chem Soc 112(9):3259–3264

    CAS  Google Scholar 

  47. Farshchi N, Abbasian A (2017) Inverse gas chromatography study of Hansen solubility parameters of rubber process oils (DAE, TDAE, MES and NAP). Rubber Chem Technol. https://doi.org/10.5254/rct.19.83697

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayssir Hamieh.

Ethics declarations

Conflicts of interest

None.

Research involving human participants and/or animals

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamieh, T., Abbasian, A. & Farshchi, N. New Methods to Characterize the Surface and Interface Acid–Base Properties of Some Hydrocarbons by Inverse Gas Chromatography. Chromatographia 83, 615–629 (2020). https://doi.org/10.1007/s10337-020-03878-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03878-z

Keywords

Navigation