Skip to main content
Log in

Preparation of Synthetic Amanitin Epitope Imprinted Polymers via Thiol-ene Click Reaction for Recognition and Extraction α- and β-Amanitins from Mushrooms

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Extraction and purification of α- and β-amanitins from mushroom samples are still challenges. Surface-imprinted core–shell microspheres were synthesized combining target recognition determinant imprinting and thiol-ene click reaction, and applied to the extraction of α- and β-amanitins in mushroom samples. The highly efficient thiol-ene click reaction method offers a simple condition during the crosslinking process of molecularly imprinted polymers (MIP), and the functional monomer using could be successfully introduced onto the silica microspheres. The synthesized SiO2@MIP were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The measurement of SiO2@MIP resultants using high-performance liquid chromatography (HPLC) clearly demonstrates that SiO2@MIP not only display excellent affinity, but also show good selective recognition to α- and β-amanitins. The imprinted microspheres were successfully applied as sorbents for the extraction of α- and β-amanitins from mushrooms, attaining recoveries of 76.8–79.2%. Furthermore, the samples were effectively purified according to the chromatogram.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaya E, Yilmaz I, Admis O, Oktay M, Bayram R, Bakirci S, Yaykasli KO, Kandis H, Saritas A, Katirci Y (2016) Toxin Rev 35:4–9

    Article  CAS  Google Scholar 

  2. Kaplan CD, Larsson KM, Kornberg RD (2008) Mol Cell 30:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moldenhauer G, Salnikov AV, Lüttgau S, Herr I, Anderl J, Faulstich H (2012) J Natl Cancer I 104:622–634

    Article  CAS  Google Scholar 

  4. Kaya E, Bayram R, Yaykasli KO, Yilmaz I, Bayram S, Yaykasli E, Yavuz MZ, Gepdiremen A (2013) Turk J Med Sci 24:S105

    Google Scholar 

  5. Golbus MS, Calarco PG, Epstein CJ (2010) J Exp Zool Part A 186:207–216

    Article  Google Scholar 

  6. Magdalan J, Ostrowska A, Piotrowska A, Izykowska I, Nowak M, Gomułkiewicz A, Podhorskaokołów M, Szelag A, Dziegiel P (2010) Folia Histochem Cyto 48:58–62

    Google Scholar 

  7. Bakirci S, Bayram R, Yilmaz I, Yaykasli KO, Bayram S, Kaya E (2015) Toxin Rev 34:200–205

    Article  CAS  Google Scholar 

  8. Hataminia F, Farhadian N, Karimi M, Ebrahimi M (2018) J Taiwan Inst Chem E 91:1–9

    Article  CAS  Google Scholar 

  9. Passos H, Freire MG, Coutinho JAP (2014) Green Chem 16:4786–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soria AC, Villamiel M (2010) Trends Food Sci Tech 21:323–331

    Article  CAS  Google Scholar 

  11. Hokanson GC, Matyunas NJ (2010) J Pharm Sci 70:329–331

    Article  Google Scholar 

  12. Zhang L, Wang Y, Guo X, Wu S (2017) J Chromatogr A 1491:108–116

    Article  CAS  PubMed  Google Scholar 

  13. Chen WB, Li SQ, Chen LJ, Fang MJ, Chen QC, Wu Z, Wu YL, Qiu YK (2015) J Chromatogr B 997:179–186

    Article  CAS  Google Scholar 

  14. Berton P, Lana NB, Ríos JM, García-Reyes JF, Altamirano JC (2016) Anal Chim Acta 905:24–41

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Wang X, Lu W, Wu X, Li J (2016) Chem Soc Rev 45:2137–2211

    Article  CAS  PubMed  Google Scholar 

  16. Yin J, Cui Y, Yang G, Wang H (2010) Chem Commun 46:7688–7690

    Article  CAS  Google Scholar 

  17. Wang XN, Liang RP, Meng XY, Qiu JD (2014) J Chromatogr A 1362:301–308

    Article  CAS  PubMed  Google Scholar 

  18. Tan J, Guo M, Tan L, Geng Y, Huang S, Tang Y, Su C, Lin CC, Liang Y (2018) Sensor Actuat B: Chem 274:627–635

    Article  CAS  Google Scholar 

  19. Saadati F, Ghahramani F, Shayani-jam H, Piri F, Yaftian MR (2018) J Taiwan Inst Chem E 86:213–221

    Article  CAS  Google Scholar 

  20. Li G, Row KH (2018) Chromatographia 81:73–88

    Article  CAS  Google Scholar 

  21. Combes A, Kadhirvel P, Bordron L, Pichon V (2019) Chromatographia 82:287–295

    Article  CAS  Google Scholar 

  22. Yu H, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, Shea KJ (2010) J Am Chem Soc 132:6644–6645

    Article  CAS  Google Scholar 

  23. Shoghi E, Mirahmadi-Zare SZ, Ghasemi R, Asghari M, Poorebrahim M, Nasr-Esfahani M-H (2018) Microchim Acta 185:241

    Article  CAS  Google Scholar 

  24. Verheyen E, Schillemans JP, Van WM, Demeniex MA, Hennink WE, van Nostrum CF (2011) Biomaterials 32:3008–3020

    Article  CAS  PubMed  Google Scholar 

  25. Feng L, Tan L, Li H, Xu Z, Shen G, Tang Y (2015) Biosens Bioelectron 69:265–271

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Tan L, Li H, Xu Z, Zuo X, Tang Y (2014) J Chromatogr A 1324:190–197

    Article  CAS  PubMed  Google Scholar 

  27. Bhairamadgi NS, Gangarapu S, Campos MAC, Paulusse JMJ, Rijn CJMV, Han Z (2013) Langmuir 29:4535–4542

    Article  CAS  PubMed  Google Scholar 

  28. Christian S, Susann N, Roland F, Bart Jan R (2012) Small 8:569–577

    Article  CAS  Google Scholar 

  29. Xue C-H, Guo X-J, Zhang M-M, Ma J-Z, Jia S-T (2015) J Mater Chem A 3:21797–21804

    Article  CAS  Google Scholar 

  30. Shen A, Guo Z, Yu L, Cao L, Liang X (2011) Chem Commun 47:4550–4552

    Article  CAS  Google Scholar 

  31. Chen L, Ou J, Liu Z, Lin H, Wang H, Dong J, Zou H (2015) J Chromatogr A 1394:103–110

    Article  CAS  PubMed  Google Scholar 

  32. Shah J, Pinnavaia TJ (2005) Chem Commun 12:1598–1600

    Article  CAS  Google Scholar 

  33. Wei S, Jakusch M, Mizaikoff B (2006) Anal Chim Acta 578:50–58

    Article  CAS  PubMed  Google Scholar 

  34. Boulanouar S, Combès A, Mezzache S, Pichon V (2017) J Chromatogr A 1513:59–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the Natural Science Foundation of China (21275057), the Scientific and Technological Innovation Foundation of Foshan Gaoming (2014F08), and Project of Education Science Planning in Guangdong Province (2017GXJK186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Xu or Yong Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. .

Supplementary material 1 (PDF 986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Tan, J., Chen, X. et al. Preparation of Synthetic Amanitin Epitope Imprinted Polymers via Thiol-ene Click Reaction for Recognition and Extraction α- and β-Amanitins from Mushrooms. Chromatographia 82, 1355–1363 (2019). https://doi.org/10.1007/s10337-019-03751-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03751-8

Keywords

Navigation