, Volume 82, Issue 5, pp 809–818 | Cite as

Validation of an HPLC–UV Method for Quantifying Oncocalyxone A in Different Media and Nanocapsules

  • Cybelle Alves Tavares
  • Francisco Humberto Xavier-Júnior
  • Otília Deusdênia Loiola Pessoa
  • Rafael Matos Ximenes
  • Nereide Stela Santos-MagalhãesEmail author


Oncocalyxone A (onco A) isolated from heartwood of Cordia oncocalyx (Auxemma oncocalyx), exhibits antitumor, analgesic and anti-inflammatory activities. In order to produce drug delivery systems containing onco A, the objective of this study was to develop and validate an HPLC method for quantifying onco A in different media and nanocapsules. The validation method was performed according to ICH guidelines for pharmaceutical products. The solubility of onco A was determined in deionized water, simulated gastric and intestinal fluids, buffer solutions at pH 5.5, 7.0, 9.0 and oils: copaiba, soybean and medium-chain triglycerides. The partition coefficients of onco A between n-octanol, oils and aqueous phase were determined at 25 °C. Accuracy, intra- and inter-day precision values presented low random errors (less than or equal to 2.53, 2.21 and 3.12%, respectively). Onco A solubility was greater in water, buffer solutions, and simulated gastric and intestinal fluids (817 ± 54 μg mL−1) than in oils (434 ± 25 μg mL−1). Onco A showed hydrophilic characteristics (log P < 1). The onco A content in chitosan-coated nanoparticles was 99.6% (995.8 ± 26.5 μg mL−1). In conclusion, a robust HPLC method for quantifying onco A was successfully developed, validated and applied for determining onco A solubility in different pHs, partition coefficient and nanocapsules.


Cordia oncocalyx Oncocalyxone A Nanocapsules Partition coefficient Solubility 



The authors thank the Brazilian research agencies for their financial support: Brazilian Ministry of Education (CAPES, PNPD-PPGNANOFARMA), Brazilian Council for Research and Development (CNPq, Grant #311232/2013-2), Brazilian Ministry of Science and Technology (MCTI), Laboratórios Associados em Nanotecnologia-UFPE (LARnano/SisNANO-MCTI, Grant # 402282/2013-2).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2019_3716_MOESM1_ESM.docx (108 kb)
Supplementary material 1 (DOCX 107 kb)


  1. 1.
    Abraham I, Josh R, Pardasani P, Pardasani RT (2011) Recent advances in 1,4-benzoquinone, chemistry. J Braz Chem Soc 22:385–421CrossRefGoogle Scholar
  2. 2.
    Gottschling M, Miller JS (2006) Classification of the taxonomic position of Auxemma, Patagonula, and Saccellium (Cordiaceae, Boraginales). Syst Bot 3:361–367CrossRefGoogle Scholar
  3. 3.
    Ferreira MAD, Nascimento NRF, Souza CM, Pessoa ODL, Lemos TLG, Ventura JS, Schattner M, Chudzinski-Tavassi AM (2008) Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Iba glycoprotein. Br J Pharmacol 154:1216–1224CrossRefGoogle Scholar
  4. 4.
    Viana SM, Ferreira MAD, Guerra PV, Viana GSB, Teixeira JM (2015) In vitro and in vivo evaluation of quinones from Auxemma Oncocalix Taub. On Leishmania Brasiliensis. J Med Plants Res 9:132–139CrossRefGoogle Scholar
  5. 5.
    Ilayaraja S, Prabakaran K, Manivannan R (2014) Evaluation of anti-bacterial, analgesic and anti-inflammatory activities of Oncocalyxone A isolated from Prenanthes sarmentosus. J Appl Pharm Sci 4:88–91Google Scholar
  6. 6.
    Sivagnanam I, Kalaivanam P, Rajamanickam M (2013) Antibiabetic activity of oncocalyxone A isolated from Prenanthes sarmenthosus. Int J Pharm Sci 5:630–633Google Scholar
  7. 7.
    Levya A, Pessoa C, Boogaerdt F, Sokaroski R, Lemos TL, Weltmore LA, Hurura RR, Moraes MO (2000) Oncocalyxones A and C, 1,4-anthracenediones from Auxemma oncocalyx: comparison with anticancer 1,9-anthracenediones. Anticancer Res 20:1029–1032Google Scholar
  8. 8.
    Di L, Kerns EH, Carter GT (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194CrossRefGoogle Scholar
  9. 9.
    Sharapova A, Ol’Khovich M, Blokhina S, Perlovich G (2017) Physico-chemical characterization antituberculosis thioacetazone: vapor pressure, solubility and lipophilicity. J Chem Thermodyn 108:18–25CrossRefGoogle Scholar
  10. 10.
    Wolfender JL (2009) HPLC in natural product analysis: the detection issue. Planta Med 75:719–734CrossRefGoogle Scholar
  11. 11.
    Costa JGM, Arriaga AM, Mattos CMC, Pessoa ODL, Nascimento Lemos TLG (2004) High-performance liquid chromatographic analysis of bioactive quinones from Auxemma glazioviana. Arkivoc 6:72–79Google Scholar
  12. 12.
    International Conference on Harmonization (ICH) (2005) Q2 (R1): validation of analytical procedures: text and methodology, November 2005. Accessed 14 Mar 2019
  13. 13.
    Food and Drug Administration (FDA) (2015) Analytical procedures and methods validation for drugs and biologics: guidance for industry, 2015. Accessed 14 Mar 2019
  14. 14.
    Agência Nacional de Vigilância Sanitária (ANVISA) RDC N°166-24 July 2017. Accessed 14 Mar 2019
  15. 15.
    Pessoa ODL, Lemos TL, Silveira ER, Raimundo BF (1993) Novel cordiachromes isolated from Auxemma oncocalyx. Nat Prod Lett 2:145–150CrossRefGoogle Scholar
  16. 16.
    Pessoa ODL, Lemos TL, Carvalho MG, Braz-Filho R (1995) Cordiachromes from Auxemma oncocalyx. Phytochemistry 40:1777–1786CrossRefGoogle Scholar
  17. 17.
    Barreto ACH, Santiago VR, Freire RM, Mazetto SE, Denardin JC, Mele G, Cavalvante IM, Ribeiro MENP, Ricardo NMPS, Gonçalves T, Carboni L, Lemos TLG, Pessoa ODL, Fechine PBA (2013) Magnetic nanosystem for cancer therapy using oncocalyxone A, an antitumor secondary metabolite isolated from a Brazilian plant. Int J Mol Sci 14:18269–18283CrossRefGoogle Scholar
  18. 18.
    United States of Pharmacopoeia (USP) (2016) 39th edition, Rockville. Accessed 14 Mar 2019
  19. 19.
    Xavier-Junior FH, Gueutin C, Morais ARV, Alencar EN, Egito EST, Vauthier C (2016) HPLC method for the dosage of paclitaxel in copaiba oil: development, validation, application to the determination of the solubility and partition coefficients. Chromatographia 79:405–412CrossRefGoogle Scholar
  20. 20.
    Bender EA, Adornec MD, Colomé LM, Abdalla DSP, Guterres SS, Pohlmann AR (2012) Hemocompatibility of poly-ε-caprolactone lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm 426:271–279CrossRefGoogle Scholar
  21. 21.
    Moein MM, El Beqqali A, Abdel-Rehim M (2017) Bioanalytical method development and validation: critical concepts and strategies. J Chromatogr B 1043:3–11CrossRefGoogle Scholar
  22. 22.
    Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Jagadeesh P (2018) An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal 147:590–611CrossRefGoogle Scholar
  23. 23.
    Bertolucci SKV, Pereira ABD, Pinto JEBP, Ribeiro JAA, Oliveira AB, Braga FC (2009) Development and validation of an RP-HPLC method for quantification of cinnamic acid derivatives and kaurane-type diterpenes in Mikania laevigata and Mikania glomerata. Planta Med 75:280–285CrossRefGoogle Scholar
  24. 24.
    Cheng CL, Shalabh Garg G (2014) Coefficient of determination for multiple measurement error models. J Multivar Anal 126:137–152CrossRefGoogle Scholar
  25. 25.
    Xu L, Jiang Y, Qiu R (2018) Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition. Bioresour Technol 247:545–552CrossRefGoogle Scholar
  26. 26.
    Mcnair H, Polite LN (2007) 17 Troubleshooting in high performance liquid chromatography. Sep Sci Technol 8:459–477Google Scholar
  27. 27.
    Jbeyli M, Kreesler J (2017) Fluorophilicity and lipophilicity of fluorinated rhodamines determined by their partition coefficients in biphasic solvent systems. J Fluor Chem 193:67–72CrossRefGoogle Scholar
  28. 28.
    Bannan CC, Calabró G, Kyu DY, Mobley DL (2016) Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput 12:4015–4024CrossRefGoogle Scholar
  29. 29.
    Xavier-Júnior FH, Egito EST, Morais ARV, Alencar EN, Maciuk A, Vauthier C (2018) Experimental design approach applied to the development of chitosan coated poly(isobutylcyanoacrylate) nanocapsules encapsulating copaiba oil. Colloids Surf A Physicochem Eng Asp 536:251–258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Imunopatologia Keizo-Asami (LIKA)Universidade Federal de Pernambuco (UFPE)RecifeBrazil
  2. 2.Departamento de AntibióticosUFPERecifeBrazil
  3. 3.Programa de Pós-Graduação em BiotecnologiaUniversidade Potiguar (UnP)NatalBrazil
  4. 4.Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations