Skip to main content
Log in

Validation of an HPLC–UV Method for Quantifying Oncocalyxone A in Different Media and Nanocapsules

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Oncocalyxone A (onco A) isolated from heartwood of Cordia oncocalyx (Auxemma oncocalyx), exhibits antitumor, analgesic and anti-inflammatory activities. In order to produce drug delivery systems containing onco A, the objective of this study was to develop and validate an HPLC method for quantifying onco A in different media and nanocapsules. The validation method was performed according to ICH guidelines for pharmaceutical products. The solubility of onco A was determined in deionized water, simulated gastric and intestinal fluids, buffer solutions at pH 5.5, 7.0, 9.0 and oils: copaiba, soybean and medium-chain triglycerides. The partition coefficients of onco A between n-octanol, oils and aqueous phase were determined at 25 °C. Accuracy, intra- and inter-day precision values presented low random errors (less than or equal to 2.53, 2.21 and 3.12%, respectively). Onco A solubility was greater in water, buffer solutions, and simulated gastric and intestinal fluids (817 ± 54 μg mL−1) than in oils (434 ± 25 μg mL−1). Onco A showed hydrophilic characteristics (log P < 1). The onco A content in chitosan-coated nanoparticles was 99.6% (995.8 ± 26.5 μg mL−1). In conclusion, a robust HPLC method for quantifying onco A was successfully developed, validated and applied for determining onco A solubility in different pHs, partition coefficient and nanocapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abraham I, Josh R, Pardasani P, Pardasani RT (2011) Recent advances in 1,4-benzoquinone, chemistry. J Braz Chem Soc 22:385–421

    Article  CAS  Google Scholar 

  2. Gottschling M, Miller JS (2006) Classification of the taxonomic position of Auxemma, Patagonula, and Saccellium (Cordiaceae, Boraginales). Syst Bot 3:361–367

    Article  Google Scholar 

  3. Ferreira MAD, Nascimento NRF, Souza CM, Pessoa ODL, Lemos TLG, Ventura JS, Schattner M, Chudzinski-Tavassi AM (2008) Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Iba glycoprotein. Br J Pharmacol 154:1216–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Viana SM, Ferreira MAD, Guerra PV, Viana GSB, Teixeira JM (2015) In vitro and in vivo evaluation of quinones from Auxemma Oncocalix Taub. On Leishmania Brasiliensis. J Med Plants Res 9:132–139

    Article  CAS  Google Scholar 

  5. Ilayaraja S, Prabakaran K, Manivannan R (2014) Evaluation of anti-bacterial, analgesic and anti-inflammatory activities of Oncocalyxone A isolated from Prenanthes sarmentosus. J Appl Pharm Sci 4:88–91

    Google Scholar 

  6. Sivagnanam I, Kalaivanam P, Rajamanickam M (2013) Antibiabetic activity of oncocalyxone A isolated from Prenanthes sarmenthosus. Int J Pharm Sci 5:630–633

    Google Scholar 

  7. Levya A, Pessoa C, Boogaerdt F, Sokaroski R, Lemos TL, Weltmore LA, Hurura RR, Moraes MO (2000) Oncocalyxones A and C, 1,4-anthracenediones from Auxemma oncocalyx: comparison with anticancer 1,9-anthracenediones. Anticancer Res 20:1029–1032

    Google Scholar 

  8. Di L, Kerns EH, Carter GT (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194

    Article  CAS  PubMed  Google Scholar 

  9. Sharapova A, Ol’Khovich M, Blokhina S, Perlovich G (2017) Physico-chemical characterization antituberculosis thioacetazone: vapor pressure, solubility and lipophilicity. J Chem Thermodyn 108:18–25

    Article  CAS  Google Scholar 

  10. Wolfender JL (2009) HPLC in natural product analysis: the detection issue. Planta Med 75:719–734

    Article  CAS  PubMed  Google Scholar 

  11. Costa JGM, Arriaga AM, Mattos CMC, Pessoa ODL, Nascimento Lemos TLG (2004) High-performance liquid chromatographic analysis of bioactive quinones from Auxemma glazioviana. Arkivoc 6:72–79

    Google Scholar 

  12. International Conference on Harmonization (ICH) (2005) Q2 (R1): validation of analytical procedures: text and methodology, November 2005. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 14 Mar 2019

  13. Food and Drug Administration (FDA) (2015) Analytical procedures and methods validation for drugs and biologics: guidance for industry, 2015. https://www.fda.gov/downloads/drugs/guidances/ucm386366.pdf. Accessed 14 Mar 2019

  14. Agência Nacional de Vigilância Sanitária (ANVISA) RDC N°166-24 July 2017. http://portal.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401. Accessed 14 Mar 2019

  15. Pessoa ODL, Lemos TL, Silveira ER, Raimundo BF (1993) Novel cordiachromes isolated from Auxemma oncocalyx. Nat Prod Lett 2:145–150

    Article  CAS  Google Scholar 

  16. Pessoa ODL, Lemos TL, Carvalho MG, Braz-Filho R (1995) Cordiachromes from Auxemma oncocalyx. Phytochemistry 40:1777–1786

    Article  CAS  Google Scholar 

  17. Barreto ACH, Santiago VR, Freire RM, Mazetto SE, Denardin JC, Mele G, Cavalvante IM, Ribeiro MENP, Ricardo NMPS, Gonçalves T, Carboni L, Lemos TLG, Pessoa ODL, Fechine PBA (2013) Magnetic nanosystem for cancer therapy using oncocalyxone A, an antitumor secondary metabolite isolated from a Brazilian plant. Int J Mol Sci 14:18269–18283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. United States of Pharmacopoeia (USP) (2016) 39th edition, Rockville. https://www.uspnf.com. Accessed 14 Mar 2019

  19. Xavier-Junior FH, Gueutin C, Morais ARV, Alencar EN, Egito EST, Vauthier C (2016) HPLC method for the dosage of paclitaxel in copaiba oil: development, validation, application to the determination of the solubility and partition coefficients. Chromatographia 79:405–412

    Article  CAS  Google Scholar 

  20. Bender EA, Adornec MD, Colomé LM, Abdalla DSP, Guterres SS, Pohlmann AR (2012) Hemocompatibility of poly-ε-caprolactone lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm 426:271–279

    Article  CAS  PubMed  Google Scholar 

  21. Moein MM, El Beqqali A, Abdel-Rehim M (2017) Bioanalytical method development and validation: critical concepts and strategies. J Chromatogr B 1043:3–11

    Article  CAS  Google Scholar 

  22. Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Jagadeesh P (2018) An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal 147:590–611

    Article  CAS  PubMed  Google Scholar 

  23. Bertolucci SKV, Pereira ABD, Pinto JEBP, Ribeiro JAA, Oliveira AB, Braga FC (2009) Development and validation of an RP-HPLC method for quantification of cinnamic acid derivatives and kaurane-type diterpenes in Mikania laevigata and Mikania glomerata. Planta Med 75:280–285

    Article  CAS  PubMed  Google Scholar 

  24. Cheng CL, Shalabh Garg G (2014) Coefficient of determination for multiple measurement error models. J Multivar Anal 126:137–152

    Article  Google Scholar 

  25. Xu L, Jiang Y, Qiu R (2018) Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition. Bioresour Technol 247:545–552

    Article  CAS  PubMed  Google Scholar 

  26. Mcnair H, Polite LN (2007) 17 Troubleshooting in high performance liquid chromatography. Sep Sci Technol 8:459–477

    CAS  Google Scholar 

  27. Jbeyli M, Kreesler J (2017) Fluorophilicity and lipophilicity of fluorinated rhodamines determined by their partition coefficients in biphasic solvent systems. J Fluor Chem 193:67–72

    Article  CAS  Google Scholar 

  28. Bannan CC, Calabró G, Kyu DY, Mobley DL (2016) Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput 12:4015–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xavier-Júnior FH, Egito EST, Morais ARV, Alencar EN, Maciuk A, Vauthier C (2018) Experimental design approach applied to the development of chitosan coated poly(isobutylcyanoacrylate) nanocapsules encapsulating copaiba oil. Colloids Surf A Physicochem Eng Asp 536:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian research agencies for their financial support: Brazilian Ministry of Education (CAPES, PNPD-PPGNANOFARMA), Brazilian Council for Research and Development (CNPq, Grant #311232/2013-2), Brazilian Ministry of Science and Technology (MCTI), Laboratórios Associados em Nanotecnologia-UFPE (LARnano/SisNANO-MCTI, Grant # 402282/2013-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nereide Stela Santos-Magalhães.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, C.A., Xavier-Júnior, F.H., Pessoa, O.D.L. et al. Validation of an HPLC–UV Method for Quantifying Oncocalyxone A in Different Media and Nanocapsules. Chromatographia 82, 809–818 (2019). https://doi.org/10.1007/s10337-019-03716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03716-x

Keywords

Navigation