Skip to main content
Log in

Immobilized Cellulose-Based Chiralpak IC Chiral Stationary Phase for Enantioseparation of Eight Imidazole Antifungal Drugs in Normal-Phase, Polar Organic Phase and Reversed-Phase Conditions Using High-Performance Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Due to the remarkable enantioselective performances of polysaccharide derivatives, immobilized cellulose-based columns have high enantioseparation ability, which can be applied under various mobile phase conditions. In the present work, a cellulose-derived chiral stationary phase (CSP), namely Chiralpak IC was evaluated for enantioseparation of eight imidazole antifungal drugs (miconazole, econazole, isoconazole, sulconazole, butoconazole, fenticonazole, sertaconazole, and ketoconazole) in three mobile phase modes: normal-phase mode, polar organic mode and reversed-phase mode. The factors that affected the enantioseparation were investigated and optimized. Results indicated that the Chiralpak IC column possessed good enantioselectivity in three modes, with all analytes being successfully resolved. In addition, the mechanism of enantioseparation was preliminarily discussed based on the molecular structures and retention behavior of the enantiomers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2(2):85–100

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Caner H, Groner E, Levy L, Agranat I (2004) Trends in the development of chiral drugs. Drug Discov Today 9(3):105–110

    Article  CAS  PubMed  Google Scholar 

  3. Brocks DR (2010) Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm Drug Dispos 27(8):387–406

    Article  CAS  Google Scholar 

  4. Schurig V (2016) The reciprocal principle of select and-selector-systems in supramolecular chromatography †. Molecules 21(11):1535

    Article  CAS  PubMed Central  Google Scholar 

  5. Han SM (2015) Direct enantiomeric separations by high performance liquid chromatography using cyclodextrins. Biomed Chromatogr 11(5):259–271

    Article  Google Scholar 

  6. Riley CM, Rosanske TW, Riley SRR (2014) Specification of drug substances and products: development and validation of analytical methods. Elsevier, New York

  7. Scriba GK (2016) Chiral recognition in separation science: an update. J Chromatogr A 1467:56–78

    Article  CAS  PubMed  Google Scholar 

  8. Ebinger K, Weller HN (2013) Comparison of chromatographic techniques for diastereomer separation of a diverse set of drug-like compounds. J Chromatogr A 1272(1):150–154

    Article  CAS  PubMed  Google Scholar 

  9. Toribio L, Bernal JL, Martín MT, Bernal J, Nozal MJ (2013) Effects of organic modifier and temperature on the enantiomeric separation of several azole drugs using supercritical fluid chromatography and the Chiralpak AD column. Biomed Chromatogr 28(1):152–158

    Article  CAS  PubMed  Google Scholar 

  10. Garzotti M, Hamdan M (2002) Supercritical fluid chromatography coupled to electrospray mass spectrometry: a powerful tool for the analysis of chiral mixtures. J Chromatogr B Anal Technol Biomed Life Sci 770(1):53–61

    Article  CAS  Google Scholar 

  11. Gong ZS, Duan LP, Tang AN (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182(7–8):1297–1304

    Article  CAS  Google Scholar 

  12. Knight J (2014) Specifications of drug substances and products: development and validation of analytical methods specifications of drug substances and products: development and validation of analytical methods. Org Process Res Dev 18(9):1154–1154

    Article  CAS  Google Scholar 

  13. Zhang T, Nguyen D, Franco P (2008) Enantiomer resolution screening strategy using multiple immobilised polysaccharide-based chiral stationary phases. J Chromatogr A 1191(1):214–222

    Article  CAS  PubMed  Google Scholar 

  14. Francotte E, Tong Z (2016) Preparation and evaluation of immobilized 4-methylbenzoylcellulose stationary phases for enantioselective separations. J Chromatogr A 1467:214–220

    Article  CAS  PubMed  Google Scholar 

  15. Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives ☆. J Chromatogr A 906(1):3–33

    Article  CAS  PubMed  Google Scholar 

  16. Ghanem A, Wang C (2017) Enantioselective separation of racemates using CHIRALPAK IG amylose-based chiral stationary phase under normal standard, non-standard and reversed phase high performance liquid chromatography. J Chromatogr A 1532:89–97

    Article  CAS  PubMed  Google Scholar 

  17. Fanali S (2017) Nano-liquid chromatography applied to enantiomers separation. J Chromatogr A 1486:20–34

    Article  CAS  PubMed  Google Scholar 

  18. Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Chankvetadze L, Chity M, Farkas T, Chankvetadze B (2017) Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 1482:32–38

    Article  CAS  PubMed  Google Scholar 

  19. Cirilli R, Ferretti R, Gallinella B, Zanitti L (2013) Retention behavior of proton pump inhibitors using immobilized polysaccharide-derived chiral stationary phases with organic-aqueous mobile phases. J Chromatogr A 1304(16):147–153

    Article  CAS  PubMed  Google Scholar 

  20. Lomsadze K, Jibuti G, Farkas T, Chankvetadze B (2012) Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles. J Chromatogr A 1234(8):50–55

    Article  CAS  PubMed  Google Scholar 

  21. Shen J, Okamoto Y (2016) Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev 116(3):1094

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Wang L, Dong S, Xia Z, Qi W, Liang Z, Shi Y (2016) Nanocellulose 3, 5-dimethylphenylcarbamate derivative coated chiral stationary phase: preparation and Enantioseparation performance. Chirality 28(5):376

    Article  CAS  PubMed  Google Scholar 

  23. Khater S, West C (2014) Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases. J Chromatogr A 1373:197–210

    Article  CAS  PubMed  Google Scholar 

  24. Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous–organic and normal-phase eluents. J Chromatogr A 922(1):127–137

    Article  CAS  PubMed  Google Scholar 

  25. Cirilli R, Ferretti R, Gallinella B, Bilia AR, Vincieri FF, La Torre F (2015) Enantioseparation of kavain on Chiralpak IA under normal-phase, polar organic and reversed-phase conditions. J Sep Sci 31(12):2206–2210

    Article  CAS  Google Scholar 

  26. Matarashvili I, Shvangiradze I, Chankvetadze L, Sidamonidze S, Takaishvili N, Farkas T, Chankvetadze B (2015) High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases. J Sep Sci 38(24):4173–4179. https://doi.org/10.1002/jssc.201500919

    Article  CAS  PubMed  Google Scholar 

  27. Baddley JW, Moser SA (2004) Emerging fungal resistance. Clin Lab Med 24(3):721–735

    Article  PubMed  Google Scholar 

  28. Alffenaar JWC, Wessels AMA, Hateren KV, Greijdanus B, Kosterink JGW, Uges DRA (2010) Method for therapeutic drug monitoring of azole antifungal drugs in human serum using LC/MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 878(1):39–44

    Article  CAS  Google Scholar 

  29. Pyrgaki C, Bannister SJ, Gera L, Gerber JG, Gal J (2011) Stereoselective determination of the epimer mixtures of itraconazole in human blood plasma using HPLC and fluorescence detection. Chirality 23(7):495–503

    Article  CAS  PubMed  Google Scholar 

  30. Feng Z, Zou Q, Tan X, Che W, Zhang Z (2011) Determination of fenticonazole enantiomers by LC-ESI-MS/MS and its application to pharmacokinetic studies in female rats. Arzneimittelforschung 61(10):587–593

    CAS  PubMed  Google Scholar 

  31. Chankvetadze B, Kartozia I, Yamamoto C, Okamoto Y (2002) Comparative enantioseparation of selected chiral drugs on four different polysaccharide-type chiral stationary phases using polar organic mobile phases. J Pharm Biomed Anal 27(3):467–478

    Article  CAS  PubMed  Google Scholar 

  32. Mskhiladze A, Karchkhadze M, Dadianidze A, Fanali S, Farkas T, Chankvetadze B (2013) Enantioseparation of chiral antimycotic drugs by HPLC with polysaccharide-based chiral columns and polar organic mobile phases with emphasis on enantiomer elution order. Chromatographia 76(21–22):1449–1458

    Article  CAS  Google Scholar 

  33. Thienpont A, Gal J, Aeschlimann C, Félix G (1999) Studies on stereoselective separations of the “azole’’ antifungal drugs ketoconazole and itraconazole using HPLC and SFC on silica-based polysaccharides. Analusis 27(8):713–718

    Article  CAS  Google Scholar 

  34. Aboul-Enein HY, Ali I (2002) Comparative study of the enantiomeric resolution of chiral antifungal drugs econazole, miconazole and sulconazole by HPLC on various cellulose chiral columns in normal phase mode. J Pharm Biomed Anal 27(3):441–446

    Article  CAS  PubMed  Google Scholar 

  35. Zhang T, Nguyen D, Franco P (2010) Reversed-phase screening strategies for liquid chromatography on polysaccharide-derived chiral stationary phases. J Chromatogr A 1217(7):1048–1055

    Article  CAS  PubMed  Google Scholar 

  36. Zhu B, Deng M, Yao Y, Yu J, Li Q (2018) Comparative studies of immobilized chiral stationary phases based on polysaccharide derivatives for enantiomeric separation of 15 azole compounds. Electrophoresis. https://doi.org/10.1002/elps.201800180

    Article  PubMed  Google Scholar 

  37. Mosiashvili L, Chankvetadze L, Farkas T, Chankvetadze B (2013) On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. J Chromatogr A 1317(19):167–174

    Article  CAS  PubMed  Google Scholar 

  38. Gogaladze K, Chankvetadze L, Tsintsadze M, Farkas T, Chankvetadze B (2015) Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase. Chirality 27(3):228

    Article  CAS  PubMed  Google Scholar 

  39. Matarashvili I, Ghughunishvili D, Chankvetadze L, Takaishvili N, Khatiashvili T, Tsintsadze M, Farkas T, Chankvetadze B (2016) Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: typical reversed-phase behavior? J Chromatogr A 1483:86–92

    Article  CAS  PubMed  Google Scholar 

  40. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78(7):2093–2099

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Yu or Xingjie Guo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sun, J., Liu, Y. et al. Immobilized Cellulose-Based Chiralpak IC Chiral Stationary Phase for Enantioseparation of Eight Imidazole Antifungal Drugs in Normal-Phase, Polar Organic Phase and Reversed-Phase Conditions Using High-Performance Liquid Chromatography. Chromatographia 82, 649–660 (2019). https://doi.org/10.1007/s10337-019-03688-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03688-y

Keywords

Navigation