, Volume 82, Issue 1, pp 17–48 | Cite as

The History of the Core–Shell Particles and Applications in Active Pharmaceutical Ingredients Via Liquid Chromatography

  • Mehmet Gumustas
  • Przemyslaw Zalewski
  • Sibel A. OzkanEmail author
  • Bengi UsluEmail author
Part of the following topical collections:
  1. 50th Anniversary Commemorative Issue


High performance liquid chromatography (HPLC) and ultrahigh performance liquid chromatography (UHPLC or UPLC) have been the most widely used tools for research and routine quality control of active pharmaceutical ingredients (API). The most important challenge in these techniques is fast and efficient separation. Both techniques are preferred due to their selectivity, high accuracy and remarkable precision. On the other hand, they have some limitations: In some cases, traditional HPLC uses high amounts of organic solvents with longer analysis time, and furthermore UHPLC has high back pressure and frictional heating. To overcome these limitations, scientists have developed new type of column particles. In general, two different silica types of column packing material based on their backbone have been used for HPLC and UHPLC. Stationary phases that have fully porous silica particles comply with the essential criteria of analysis, but these show all the limitations of HPLC. However, in recent years, core–shell silica particles (a combination of solid core and porous shell) have been increasingly used for highly efficient separation with reduced run times. Thus, core–shell technology provides the same efficient separations as the sub 2 µm particles that are used in UHPLC, while eliminating the disadvantages (potentially lower backpressure). The key factors for core–shell particles are size and thickness of porous shell layer, the latter of which can be explained using the Van Deemter equation. The columns packed with core–shell particles have been employed in a wide range of applications for analysis and quality control of pharmaceutical active substances. This review will underline the advantages of core–shell silica particles in the analysis of pharmaceutically active ingredients based on liquid chromatography from the perspective of column properties, system suitability test parameter results and validation steps.


HPLC UHPLC UPLC Core–shell Pharmaceutical Validation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Snyder LR, Dolan JW (2017) Chap. 1—milestones in the development of liquid chromatography. In: Liquid chromatography (Second Edition), Fanali S, Haddad PR, Poole CF, Riekkola M-L (eds) Elsevier, Oxford, pp. 1–15Google Scholar
  2. 2.
    Horvath CG, Preiss BA, Lipsky SR (1967) Anal Chem 39:1422–1428. Google Scholar
  3. 3.
    Horvath C, Lipsky SR (1969) J Chromatogr Sci 7:109–116. Google Scholar
  4. 4.
    Kirkland JJ (1969) Anal Chem 41:218–220. Google Scholar
  5. 5.
    Kirkland JJ, Truszkowski FA, Dilks CH Jr, Engel GS (2000) J Chromatogr A 890:3–13Google Scholar
  6. 6.
    Gritti F, Cavazzini A, Marchetti N, Guiochon G (2007) J Chromatogr A 1157:289–303. Google Scholar
  7. 7.
    Fekete S, Fekete J, Ganzler K (2009) J Pharm Biomed Anal 49:64–71. Google Scholar
  8. 8.
    Gritti F, Guiochon G (2011) J Chromatogr A 1218:3476–3488. Google Scholar
  9. 9.
    Gritti F, Guiochon G (2011) Chem Eng Sci 66:3773–3781. Google Scholar
  10. 10.
    Gritti F, Guiochon G (2011) J Chromatogr A 1218:907–921. Google Scholar
  11. 11.
    Omamogho JO, Hanrahan JP, Tobin J, Glennon JD (2011) J Chromatogr A 1218:1942–1953. Google Scholar
  12. 12.
    Kirkland JJ, Truszkowski FA, Dilks CH, Engel GS (2000) J Chromatogr A 890:3–13. Google Scholar
  13. 13.
    Kirkland JJ (1992) Anal Chem 64:1239–1245. Google Scholar
  14. 14.
    Honda F, Honda H, Koishi M (1992) J Chromatogr A 609:49–59. Google Scholar
  15. 15.
    Gritti F, Farkas T, Heng J, Guiochon G (2011) J Chromatogr A 1218:8209–8221. Google Scholar
  16. 16.
    Destefano JJ, Langlois TJ, Kirkland JJ (2008) J Chromatogr Sci 46:254–260Google Scholar
  17. 17.
    Deng T-S, Marlow F (2012) Chem Mater 24:536–542. Google Scholar
  18. 18.
    Büchel G, Unger Klaus K, Matsumoto A, Tsutsumi K (1999) Adv Mater 10:1036–1038.;2-Z Google Scholar
  19. 19.
    Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) J Am Chem Soc 130:28–29. Google Scholar
  20. 20.
    Han L, Wei H, Tu B, Zhao D (2011) Chem Commun 47:8536–8538. Google Scholar
  21. 21.
    Kim JH, Jeon TY, Choi TM, Shim TS, Kim S-H, Yang S-M (2014) Langmuir 30:1473–1488. Google Scholar
  22. 22.
    Nie Z, Park JI, Li W, Bon SAF, Kumacheva E (2008) J Am Chem Soc 130:16508–16509. Google Scholar
  23. 23.
    Lan W, Li S, Xu J, Luo G (2011) Langmuir 27:13242–13247. Google Scholar
  24. 24.
    Kaczmarski K, Guiochon G (2007) Anal Chem 79:4648–4656. Google Scholar
  25. 25.
    Marchetti N, Guiochon G (2007) J Chromatogr A 1176:206–216. Google Scholar
  26. 26.
    Ali I, Al-kindy SMZ, Suliman FO, Alam SD (2011) Anal Methods 3:2836–2841. Google Scholar
  27. 27.
    Alpert AJ (1990) J Chromatogr A 499:177–196. Google Scholar
  28. 28.
    McCalley DV (2008) J Chromatogr A 1193:85–91. Google Scholar
  29. 29.
    Grumbach ES, Wagrowski-Diehl DM, Mazzeo JR, Alden B, Iraneta PC (2004) LC GC N Am 22:1010–1023Google Scholar
  30. 30.
    Ali I, Al-Othman ZA, Nagae N, Gaitonde VD, Dutta KK (2012) J Sep Sci 35:3235–3249. Google Scholar
  31. 31.
    Ali I, Al-Othman ZA, Al-Za’abi M (2012) Biomed Chromatogr: BMC 26:1001–1008. Google Scholar
  32. 32.
    Fekete S, Oláh E, Fekete J (2012) J Chromatogr A 1228:57–71. Google Scholar
  33. 33.
    Gritti F (2011) Am Pharm Rev 14:26–33Google Scholar
  34. 34.
    Torquato S (1985) J Appl Phys 58:3790–3797. Google Scholar
  35. 35.
    Hayes R, Ahmed A, Edge T, Zhang H (2014) J Chromatogr A 1357:36–52. Google Scholar
  36. 36.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Chem Eng Sci 5:271–289. Google Scholar
  37. 37.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1995) Chem Eng Sci 50:3869–3882. Google Scholar
  38. 38.
    Knox JH (1999) J Chromatogr A 831:3–15. Google Scholar
  39. 39.
    Knox JH, Scott HP (1983) J Chromatogr A 282:297–313. Google Scholar
  40. 40.
    Schuster SA, Boyes BE, Wagner BM, Kirkland JJ (2012) Journal of chromatography A 1228:232–241. Google Scholar
  41. 41.
    Ettre LS, Sakodynskii KI (1993) Chromatographia 35:223–231. Google Scholar
  42. 42.
    Gritti F, Guiochon G (2012) J Chromatogr A 1228:2–19. Google Scholar
  43. 43.
    Gritti F, Guiochon G (2012) LCGC N Am 30Google Scholar
  44. 44.
    Gritti F, Tanaka N, Guiochon G (2012) J Chromatogr A 1236:28–41. Google Scholar
  45. 45.
    Guiochon G, Gritti F (2011) J Chromatogr A 1218:1915–1938. Google Scholar
  46. 46.
    Kirkland JJ, Schuster SA, Johnson WL, Boyes BE (2013) J Pharm Anal 3:303–312. Google Scholar
  47. 47.
    Zalewski P, Talaczyńska A, Korban P, Garbacki P, Mizera M, Cielecka-Piontek J (2014) Chromatographia 77:1483–1487. Google Scholar
  48. 48.
    Garbacki P, Zalewski P, Skibiński R, Kozak M, Ratajczak M, Lewandowska K, Bednarski W, Podborska A, Mizera M, Jelińska A, Cielecka-Piontek J (2015) X-Ray Spectrom 44:344–350. Google Scholar
  49. 49.
    Paczkowska M, Zalewski P, Garbacki P, Talaczyńska A, Krause A, Cielecka-Piontek J (2014) Chromatographia 77:1497–1501. Google Scholar
  50. 50.
    Talaczyńska A, Lewandowska K, Garbacki P, Zalewski P, Skibiński R, Miklaszewski A, Mizera M, Cielecka-Piontek J (2016) Drug Dev Ind Pharm 42:238–244. Google Scholar
  51. 51.
    Zalewski P, Skibiński R, Paczkowska M, Garbacki P, Talaczyńska A, Cielecka-Piontek J, Jelińska A (2016) Drug Dev Ind Pharm 42:572–577. Google Scholar
  52. 52.
    Zalewski P, Skibiński R, Szymanowska-Powałowska D, Piotrowska H, Kozak M, Pietralik Z, Bednarski W, Cielecka-Piontek J (2016) J Pharm Biomed Anal 118:410–416. Google Scholar
  53. 53.
    Zalewski P, Skibiński R, Talaczyńska A, Paczkowska M, Garbacki P, Cielecka-Piontek J (2015) J Pharm Biomed Anal 114:222–226. Google Scholar
  54. 54.
    Tam J, Ahmad IAH, Blasko A (2018) J Pharm Biomed Anal 155:288–297. Google Scholar
  55. 55.
    Mehmet G, Gokhan CM, Feyyaz O, A. OS (2018) Biomed Chromatogr 32:e4158. DOIGoogle Scholar
  56. 56.
    Defaix C, Solgadi A, Pham TH, Gardier AM, Chaminade P, Tritschler L (2018) J Pharm Biomed Anal 152:31–38. Google Scholar
  57. 57.
    Zhang Y, Zou Z, Chou G (2018) Anal Methods 10:1325–1330. Google Scholar
  58. 58.
    Wu Y, Guo H, Bu J, Tan Y, Zhong J, Zhao Q (2018) J Chromatogr B: Anal Technol Biomed Life Sci 1076:22–28. Google Scholar
  59. 59.
    Yıldırım S, Ulaş Çolak N, Yaşar A (2018) J Liq Chromatogr Relat Technol 41:66–72. Google Scholar
  60. 60.
    Armentano A, Summa S, Lo Magro S, Palermo C, Nardiello D, Centonze D, Muscarella M (2018) J Chromatogr A 1531:46–52. Google Scholar
  61. 61.
    Patel B, Wene D, Fan ZT (2017) J Pharm Biomed Anal 146:15–23. Google Scholar
  62. 62.
    Akula VK, Sinha BN, Seok HJ (2017) Indian J Pharm Educ Res 51:S769–S775. Google Scholar
  63. 63.
    Michael AM, Shalliker RA (2017) Anal Methods 9:4514–4519. Google Scholar
  64. 64.
    Kastner P, Pilarova P, Nejedly T, Machacek M, Klimes J (2017) Curr Pharm Anal 13:250–255. Google Scholar
  65. 65.
    Czerniak K, Cielecka-Piontek J, Zalewski P (2017) Acta Poloniae Pharmaceutica Drug Res 74:1637–1643Google Scholar
  66. 66.
    Zheng L, Huo XK, Wang C, Cong HJ, Xiang T, Wu B, Zhang BJ, Huang SS, Zhang L, Ma XC (2016) Anal Methods 8:3359–3365. Google Scholar
  67. 67.
    Ragab GH, Saleh HM, El-Henawee MM, Elsayed OF (2016) J Appl Pharm Sci 6:064–071. Google Scholar
  68. 68.
    Montemurro M, De Zan MM, Robles JC (2016) J Pharm Anal 6:103–111. Google Scholar
  69. 69.
    Mohamed AMI, Abdel-Wadood HM, Mousa HS (2016) New J Chem 40:8424–8437. Google Scholar
  70. 70.
    Kučera L, Fanali S, Aturki Z, Pospíšil T, Bednář P (2016) J Chromatogr A 1428:126–133. Google Scholar
  71. 71.
    Jiang H, Liao X, Wood CM, Xiao CW, Feng YL (2016) J Chromatogr B: Anal Technol Biomed Life Sci 1012–1013:106–112. Google Scholar
  72. 72.
    Ishihara Y, Sugita H, Takano J, Kitami H (2016) Bunseki Kagaku 65:87–92. Google Scholar
  73. 73.
    Fontana AR, Antoniolli A, Bottini R (2016) Food Chem 192:1–8. Google Scholar
  74. 74.
    Fibigr J, Šatínský D, Havlíková L, Solich P (2016) J Pharm Biomed Anal 120:383–390. Google Scholar
  75. 75.
    Bertolini T, Vicentini L, Boschetti S, Andreatta P, Gatti R (2016) J Pharm Biomed Anal 129:198–202. Google Scholar
  76. 76.
    Baghdikian B, Filly A, Fabiano-Tixier AS, Petitcolas E, Mabrouki F, Chemat F, Ollivier E (2016) C R Chim 19:692–698. Google Scholar
  77. 77.
    Ali I, Rani D, Al-Othman ZA (2016) J Liq Chromatogr Relat Technol 39:339–345. Google Scholar
  78. 78.
    Song Q, Song Y, Zhang N, Li J, Jiang Y, Zhang K, Zhang Q, Tu P (2015) RSC Adv 5:57372–57382. Google Scholar
  79. 79.
    Mizera M, Talaczyńska A, Zalewski P, Skibiński R, Cielecka-Piontek J (2015) Talanta 137:174–181. Google Scholar
  80. 80.
    Marley A, Stalcup AM, Connolly D (2015) J Pharm Biomed Anal 102:261–266. Google Scholar
  81. 81.
    Mahesh HRK, Sudhakar Babu K (2015) Res J Pharm Technol 8:172–176. Google Scholar
  82. 82.
    Gumustas M, Coskun G, Ozkan SA (2015) Rev Roum Chim 60:477–490Google Scholar
  83. 83.
    Gumustas M, Alshana U, Ertas N, Goger NG, Ozkan SA, Uslu B (2015) Journal of Pharmaceutical and Biomedical Analysis.
  84. 84.
    Gras CC, Carle R, Schweiggert RM (2015) J Food Compos Anal 44:170–177. Google Scholar
  85. 85.
    Feng YL, Liao X, Grenier G, Nguyen N, Chan P (2015) Anal Methods 7:8048–8059. Google Scholar
  86. 86.
    Chebrolu KK, Yousef GG, Park R, Tanimura Y, Brown AF (2015) J Chromatogr B: Anal Technol Biomed Life Sci 1001:41–48. Google Scholar
  87. 87.
    Vetter F, Pohl J, Pohl B, Bracher F (2014) Pharmazie 69:455–457. Google Scholar
  88. 88.
    Tölgyesi T, Tölgyesi L, Békési K, Sharma VK, Fekete J (2014) Meat Sci 96:1332–1339. Google Scholar
  89. 89.
    Tölgyesi T, Sharma VK, Fekete J (2014) J Pharm Biomed Anal 88:45–52. Google Scholar
  90. 90.
    Saraiva FRS, Inoue TY, Camargo SS, Malheiros A, da Silva RML, Bresolin TMB (2014) Curr Pharm Anal 10:169–174. Google Scholar
  91. 91.
    Martano G, Bojaxhi E, Forstenlehner IC, Huber CG, Bresgen N, Eckl PM, Stutz H (2014) Anal Bioanal Chem 406:2909–2924. Google Scholar
  92. 92.
    Hurtado-Sánchez MDC, Espinosa-Mansilla A, Rodríguez-Cáceres MI, Durán-Merás I (2014) J Agric Food Chem 62:97–106. Google Scholar
  93. 93.
    Gómez-Caravaca AM, Verardo V, Berardinelli A, Marconi E, Caboni MF (2014) J Chromatogr A 1355:134–142. Google Scholar
  94. 94.
    Acquaviva A, Romero L, Castells C, Ramis-Ramos G, Herrero-Martinez JM (2014) Anal Methods 6:5830–5837. Google Scholar
  95. 95.
    Yamamori K, Watanabe T, Inada M, Wakayama T, Kanda M, Nakate T, Kitamura S (2013) Bunseki Kagaku 62:333–338. Google Scholar
  96. 96.
    Tölgyesi Á, Kunsági Z (2013) Microchem J 106:300–306. Google Scholar
  97. 97.
    Mao J, Lei S, Yang X, Xiao D (2013) Food Control 32:505–511. Google Scholar
  98. 98.
    La Nasa J, Ghelardi E, Degano I, Modugno F, Colombini MP (2013) J Chromatogr A 1308:114–124. Google Scholar
  99. 99.
    Kučerová B, Krčmová L, Solichová D, Plíšek J, Solich P (2013) J Sep Sci 36:2223–2230. Google Scholar
  100. 100.
    Judge MD, Aab C (2013) Can J Chem 91:352–356. Google Scholar
  101. 101.
    Bardarov V, Dinchev D, Bardarov K (2013) J Univ Chem Technol Metall 48:341–346Google Scholar
  102. 102.
    Tzanavaras PD, Karakosta TD, Rigas PG, Themelis DG, Zotou A (2012) Cent Eur J Chem 10:1459–1463. Google Scholar
  103. 103.
    Tölgyesi Á, Sharma VK, Fekete S, Lukonics D, Fekete J (2012) J Chromatogr B: Anal Technol Biomed Life Sci 906:75–84. Google Scholar
  104. 104.
    Tölgyesi Á, Sharma VK, Fekete S, Fekete J, Simon A, Farkas S (2012) J Pharm Biomed Anal 64–65:40–48. Google Scholar
  105. 105.
    Tölgyesi Á, Fekete J, Fekete S, Sharma VK, Békési K, Tóth E (2012) J Chromatogr Sci 50:190–198. Google Scholar
  106. 106.
    Hroch M, Havlínová Z, Nobilis M, Chládek J (2012) J Chromatogr B: Anal Technol Biomed Life Sci 880:90–99. Google Scholar
  107. 107.
    Baecher S, Leinenbach A, Wright JA, Pongratz S, Kobold U, Thiele R (2012) Clin Biochem 45:1491–1496. Google Scholar
  108. 108.
    Samanidou VF, Karageorgou EG (2011) Drug Testing Analysis 3:234–244. Google Scholar
  109. 109.
    Koerner PJ, Jarrett D, Layne J (2011) LCGC N Am 29:44–46Google Scholar
  110. 110.
    Abrahim A, Al-Sayah M, Skrdla P, Bereznitski Y, Chen Y, Wu N (2010) J Pharm Biomed Anal 51:131–137. Google Scholar
  111. 111.
    Wang S, Wen J, Cui L, Zhang X, Wei H, Xie R, Feng B, Wu Y, Fan G (2010) J Pharm Biomed Anal 51:889–893. Google Scholar
  112. 112.
    Zheng J, Patel D, Tang Q, Markovich RJ, Rustum AM (2009) J Pharm Biomed Anal 50:815–822. Google Scholar
  113. 113.
    Hsieh Y, Duncan CJG, Brisson J-M (2007) Anal Chem 79:5668–5673. Google Scholar
  114. 114.
    Rogers LA, Crews KE, Long SG, Patterson KM, McCune JE (2009) J Liq Chromatogr Relat Technol 32:2246–2264. Google Scholar
  115. 115.
    Vass A, Robles-Molina J, Perez-Ortega P, Gilbert-Lopez B, Dernovics M, Molina-Diaz A, Garcia-Reyes JF (2016) Anal Bioanal Chem 408:4857–4869. Google Scholar
  116. 116.
    Chauve B, Guillarme D, Cleon P, Veuthey JL (2010) J Sep Sci 33:752–764. Google Scholar
  117. 117.
    Paczkowska M, Mizera M, Tężyk A, Zalewski P, Dzitko J, Cielecka-Piontek JA J Chem.
  118. 118.
    Gumustas M, Ozkan SA, Chankvetadze B (2016) J Chromatogr A 1467:297–305. Google Scholar
  119. 119.
    Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Chankvetadze L, Chity M, Farkas T, Chankvetadze B (2017) J Chromatogr A 1482:32–38. Google Scholar
  120. 120.
    Chankvetadze B (2012) J Chromatogr A 1269:26–51. Google Scholar
  121. 121.
    Chankvetadze B (2017) Liquid chromatographic separation of enantiomers. In: Liquid chromatography: applications, 2. Elsevier Inc., Oxford, pp. 69–86Google Scholar
  122. 122.
    D’Orazio G, Fanali C, Karchkhadze M, Chankvetadze B, Fanali S (2017) J Chromatogr A 1520:127–134. Google Scholar
  123. 123.
    Khatiashvili T, Kakava R, Matarashvili I, Tabani H, Fanali C, Volonterio A, Farkas T, Chankvetadze B (2018) J Chromatogr A 1545:59–66. Google Scholar
  124. 124.
    Lomsadze K, Jibuti G, Farkas T, Chankvetadze B (2012) J Chromatogr A 1234:50–55. Google Scholar
  125. 125.
    Shedania Z, Kakava R, Volonterio A, Farkas T, Chankvetadze B (2018) J Chromatogr A 1557:62–74. Google Scholar
  126. 126.
    Cabooter D, Fanigliulo A, Bellazzi G, Allieri B, Rottigni A, Desmet G (2010) J Chromatogr A 1217:7074–7081. Google Scholar
  127. 127.
    Gritti F, Perdu MA, Guiochon G (2012) J Chromatogr A 1229:148–155. Google Scholar
  128. 128.
    Wu X, You L, Di B, Hao W, Su M, Gu Y, Shen L (2013) J Chromatogr A 1299:78–84. Google Scholar
  129. 129.
    Alessia C, IO H, Giulia M, Claudio V, Francesco G (2018) J Sep Sci 41:1307–1318. DOIGoogle Scholar
  130. 130.
    Catani M, Felletti S, Ismail OH, Gasparrini F, Pasti L, Marchetti N, De Luca C, Costa V, Cavazzini A (2018) Anal Bioanal Chem 410:2457–2465. Google Scholar
  131. 131.
    Bezhitashvili L, Bardavelidze A, Mskhiladze A, Gumustas M, Ozkan SA, Volonterio A, Farkas T, Chankvetadze B (2018) J Chromatogr A 1571:132–139. Google Scholar
  132. 132.
    Takeuchi T (2003) Anal Bioanal Chem 375:26–27. Google Scholar
  133. 133.
    Bruns S, Grinias JP, Blue LE, Jorgenson JW, Tallarek U (2012) Anal Chem 84:4496–4503. Google Scholar
  134. 134.
    Avery RG, Ramsay JDF (1973) J Colloid Interface Sci 42:597–606. Google Scholar
  135. 135.
    Colon LA, Maloney TD, Fermier AM (2000) J Chromatogr A 887:43–53Google Scholar
  136. 136.
    Boughtflower RJ, Underwood T, Paterson CJ (1995) Chromatographia 40:329–335. Google Scholar
  137. 137.
  138. 138.
    Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184:393–415. Google Scholar
  139. 139.
    Fanali C, Rocco A, Aturki Z, Mondello L, Fanali S (2012) J Chromatogr A 1234:38–44. Google Scholar
  140. 140.
    Fanali S, D’Orazio G, Farkas T, Chankvetadze B (2012) Journal of chromatography. A 1269:136–142. Google Scholar
  141. 141.
    Fanali S, Rocchi S, Chankvetadze B (2013) Electrophoresis 34:1737–1742. Google Scholar
  142. 142.
    Wagner BM, Schuster SA, Boyes BE, Kirkland JJ (2012) J Chromatogr A 1264:22–30. Google Scholar
  143. 143.
    Ruta J, Guillarme D, Rudaz S, Veuthey JL (2010) J Sep Sci 33:2465–2477. Google Scholar
  144. 144.
    Ruta J, Zurlino D, Grivel C, Heinisch S, Veuthey JL, Guillarme D (2012) J Chromatogr A 1228:221–231. Google Scholar
  145. 145.
    Preti R (2016) Int J Anal Chem. Google Scholar
  146. 146.
    Preti R, Antonelli ML, Bernacchia R, Vinci G (2015) Food Chem 187:555–562. Google Scholar
  147. 147.
    Vinci G, Antonelli ML, Preti R (2013) J Sep Sci 36:461–468. Google Scholar
  148. 148.
    Zhang P, Bui A, Rose G, Allinson G (2014) Journal of chromatography. A 1325:56–64. Google Scholar
  149. 149.
    Marhol P, Gazak R, Bednar P, Kren V (2011) J Sep Sci 34:2206–2213. Google Scholar
  150. 150.
    Gritti F, Guiochon G (2014) J Chromatogr A 1333:60–69. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forensic Toxicology, Institute of Forensic SciencesAnkara UniversityAnkaraTurkey
  2. 2.Department of Pharmacognosy, Faculty of PharmacyPoznan University of Medical SciencesPoznanPoland
  3. 3.Department of Analytical Chemistry, Faculty of PharmacyAnkara UniversityAnkaraTurkey

Personalised recommendations