Advertisement

Chromatographia

, Volume 82, Issue 1, pp 17–48 | Cite as

The History of the Core–Shell Particles and Applications in Active Pharmaceutical Ingredients Via Liquid Chromatography

  • Mehmet Gumustas
  • Przemyslaw Zalewski
  • Sibel A. OzkanEmail author
  • Bengi UsluEmail author
Review
  • 473 Downloads
Part of the following topical collections:
  1. 50th Anniversary Commemorative Issue

Abstract

High performance liquid chromatography (HPLC) and ultrahigh performance liquid chromatography (UHPLC or UPLC) have been the most widely used tools for research and routine quality control of active pharmaceutical ingredients (API). The most important challenge in these techniques is fast and efficient separation. Both techniques are preferred due to their selectivity, high accuracy and remarkable precision. On the other hand, they have some limitations: In some cases, traditional HPLC uses high amounts of organic solvents with longer analysis time, and furthermore UHPLC has high back pressure and frictional heating. To overcome these limitations, scientists have developed new type of column particles. In general, two different silica types of column packing material based on their backbone have been used for HPLC and UHPLC. Stationary phases that have fully porous silica particles comply with the essential criteria of analysis, but these show all the limitations of HPLC. However, in recent years, core–shell silica particles (a combination of solid core and porous shell) have been increasingly used for highly efficient separation with reduced run times. Thus, core–shell technology provides the same efficient separations as the sub 2 µm particles that are used in UHPLC, while eliminating the disadvantages (potentially lower backpressure). The key factors for core–shell particles are size and thickness of porous shell layer, the latter of which can be explained using the Van Deemter equation. The columns packed with core–shell particles have been employed in a wide range of applications for analysis and quality control of pharmaceutical active substances. This review will underline the advantages of core–shell silica particles in the analysis of pharmaceutically active ingredients based on liquid chromatography from the perspective of column properties, system suitability test parameter results and validation steps.

Keywords

HPLC UHPLC UPLC Core–shell Pharmaceutical Validation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Snyder LR, Dolan JW (2017) Chap. 1—milestones in the development of liquid chromatography. In: Liquid chromatography (Second Edition), Fanali S, Haddad PR, Poole CF, Riekkola M-L (eds) Elsevier, Oxford, pp. 1–15Google Scholar
  2. 2.
    Horvath CG, Preiss BA, Lipsky SR (1967) Anal Chem 39:1422–1428.  https://doi.org/10.1021/ac60256a003 Google Scholar
  3. 3.
    Horvath C, Lipsky SR (1969) J Chromatogr Sci 7:109–116.  https://doi.org/10.1093/chromsci/7.2.109 Google Scholar
  4. 4.
    Kirkland JJ (1969) Anal Chem 41:218–220.  https://doi.org/10.1021/ac60270a054 Google Scholar
  5. 5.
    Kirkland JJ, Truszkowski FA, Dilks CH Jr, Engel GS (2000) J Chromatogr A 890:3–13Google Scholar
  6. 6.
    Gritti F, Cavazzini A, Marchetti N, Guiochon G (2007) J Chromatogr A 1157:289–303.  https://doi.org/10.1016/j.chroma.2007.05.030 Google Scholar
  7. 7.
    Fekete S, Fekete J, Ganzler K (2009) J Pharm Biomed Anal 49:64–71.  https://doi.org/10.1016/j.jpba.2008.10.009 Google Scholar
  8. 8.
    Gritti F, Guiochon G (2011) J Chromatogr A 1218:3476–3488.  https://doi.org/10.1016/j.chroma.2011.03.063 Google Scholar
  9. 9.
    Gritti F, Guiochon G (2011) Chem Eng Sci 66:3773–3781.  https://doi.org/10.1016/j.ces.2011.04.039 Google Scholar
  10. 10.
    Gritti F, Guiochon G (2011) J Chromatogr A 1218:907–921.  https://doi.org/10.1016/j.chroma.2010.12.046 Google Scholar
  11. 11.
    Omamogho JO, Hanrahan JP, Tobin J, Glennon JD (2011) J Chromatogr A 1218:1942–1953.  https://doi.org/10.1016/j.chroma.2010.11.067 Google Scholar
  12. 12.
    Kirkland JJ, Truszkowski FA, Dilks CH, Engel GS (2000) J Chromatogr A 890:3–13.  https://doi.org/10.1016/S0021-9673(00)00392-7 Google Scholar
  13. 13.
    Kirkland JJ (1992) Anal Chem 64:1239–1245.  https://doi.org/10.1021/ac00035a009 Google Scholar
  14. 14.
    Honda F, Honda H, Koishi M (1992) J Chromatogr A 609:49–59.  https://doi.org/10.1016/0021-9673(92)80148-N Google Scholar
  15. 15.
    Gritti F, Farkas T, Heng J, Guiochon G (2011) J Chromatogr A 1218:8209–8221.  https://doi.org/10.1016/j.chroma.2011.09.034 Google Scholar
  16. 16.
    Destefano JJ, Langlois TJ, Kirkland JJ (2008) J Chromatogr Sci 46:254–260Google Scholar
  17. 17.
    Deng T-S, Marlow F (2012) Chem Mater 24:536–542.  https://doi.org/10.1021/cm203099m Google Scholar
  18. 18.
    Büchel G, Unger Klaus K, Matsumoto A, Tsutsumi K (1999) Adv Mater 10:1036–1038.  https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3C1036::AID-ADMA1036%3E3.0.CO;2-Z Google Scholar
  19. 19.
    Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) J Am Chem Soc 130:28–29.  https://doi.org/10.1021/ja0777584 Google Scholar
  20. 20.
    Han L, Wei H, Tu B, Zhao D (2011) Chem Commun 47:8536–8538.  https://doi.org/10.1039/C1CC12718G Google Scholar
  21. 21.
    Kim JH, Jeon TY, Choi TM, Shim TS, Kim S-H, Yang S-M (2014) Langmuir 30:1473–1488.  https://doi.org/10.1021/la403220p Google Scholar
  22. 22.
    Nie Z, Park JI, Li W, Bon SAF, Kumacheva E (2008) J Am Chem Soc 130:16508–16509.  https://doi.org/10.1021/ja807764m Google Scholar
  23. 23.
    Lan W, Li S, Xu J, Luo G (2011) Langmuir 27:13242–13247.  https://doi.org/10.1021/la202055f Google Scholar
  24. 24.
    Kaczmarski K, Guiochon G (2007) Anal Chem 79:4648–4656.  https://doi.org/10.1021/ac070209w Google Scholar
  25. 25.
    Marchetti N, Guiochon G (2007) J Chromatogr A 1176:206–216.  https://doi.org/10.1016/j.chroma.2007.11.012 Google Scholar
  26. 26.
    Ali I, Al-kindy SMZ, Suliman FO, Alam SD (2011) Anal Methods 3:2836–2841.  https://doi.org/10.1039/C1AY05496A Google Scholar
  27. 27.
    Alpert AJ (1990) J Chromatogr A 499:177–196.  https://doi.org/10.1016/S0021-9673(00)96972-3 Google Scholar
  28. 28.
    McCalley DV (2008) J Chromatogr A 1193:85–91.  https://doi.org/10.1016/j.chroma.2008.04.007 Google Scholar
  29. 29.
    Grumbach ES, Wagrowski-Diehl DM, Mazzeo JR, Alden B, Iraneta PC (2004) LC GC N Am 22:1010–1023Google Scholar
  30. 30.
    Ali I, Al-Othman ZA, Nagae N, Gaitonde VD, Dutta KK (2012) J Sep Sci 35:3235–3249.  https://doi.org/10.1002/jssc.201200454 Google Scholar
  31. 31.
    Ali I, Al-Othman ZA, Al-Za’abi M (2012) Biomed Chromatogr: BMC 26:1001–1008.  https://doi.org/10.1002/bmc.2690 Google Scholar
  32. 32.
    Fekete S, Oláh E, Fekete J (2012) J Chromatogr A 1228:57–71.  https://doi.org/10.1016/j.chroma.2011.09.050 Google Scholar
  33. 33.
    Gritti F (2011) Am Pharm Rev 14:26–33Google Scholar
  34. 34.
    Torquato S (1985) J Appl Phys 58:3790–3797.  https://doi.org/10.1063/1.335593 Google Scholar
  35. 35.
    Hayes R, Ahmed A, Edge T, Zhang H (2014) J Chromatogr A 1357:36–52.  https://doi.org/10.1016/j.chroma.2014.05.010 Google Scholar
  36. 36.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Chem Eng Sci 5:271–289.  https://doi.org/10.1016/0009-2509(56)80003-1 Google Scholar
  37. 37.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1995) Chem Eng Sci 50:3869–3882.  https://doi.org/10.1016/0009-2509(96)81813-6 Google Scholar
  38. 38.
    Knox JH (1999) J Chromatogr A 831:3–15.  https://doi.org/10.1016/S0021-9673(98)00497-X Google Scholar
  39. 39.
    Knox JH, Scott HP (1983) J Chromatogr A 282:297–313.  https://doi.org/10.1016/S0021-9673(00)91609-1 Google Scholar
  40. 40.
    Schuster SA, Boyes BE, Wagner BM, Kirkland JJ (2012) Journal of chromatography A 1228:232–241.  https://doi.org/10.1016/j.chroma.2011.07.082 Google Scholar
  41. 41.
    Ettre LS, Sakodynskii KI (1993) Chromatographia 35:223–231.  https://doi.org/10.1007/bf02269707 Google Scholar
  42. 42.
    Gritti F, Guiochon G (2012) J Chromatogr A 1228:2–19.  https://doi.org/10.1016/j.chroma.2011.07.014 Google Scholar
  43. 43.
    Gritti F, Guiochon G (2012) LCGC N Am 30Google Scholar
  44. 44.
    Gritti F, Tanaka N, Guiochon G (2012) J Chromatogr A 1236:28–41.  https://doi.org/10.1016/j.chroma.2012.02.046 Google Scholar
  45. 45.
    Guiochon G, Gritti F (2011) J Chromatogr A 1218:1915–1938.  https://doi.org/10.1016/j.chroma.2011.01.080 Google Scholar
  46. 46.
    Kirkland JJ, Schuster SA, Johnson WL, Boyes BE (2013) J Pharm Anal 3:303–312.  https://doi.org/10.1016/j.jpha.2013.02.005 Google Scholar
  47. 47.
    Zalewski P, Talaczyńska A, Korban P, Garbacki P, Mizera M, Cielecka-Piontek J (2014) Chromatographia 77:1483–1487.  https://doi.org/10.1007/s10337-014-2725-6 Google Scholar
  48. 48.
    Garbacki P, Zalewski P, Skibiński R, Kozak M, Ratajczak M, Lewandowska K, Bednarski W, Podborska A, Mizera M, Jelińska A, Cielecka-Piontek J (2015) X-Ray Spectrom 44:344–350.  https://doi.org/10.1002/xrs.2638 Google Scholar
  49. 49.
    Paczkowska M, Zalewski P, Garbacki P, Talaczyńska A, Krause A, Cielecka-Piontek J (2014) Chromatographia 77:1497–1501.  https://doi.org/10.1007/s10337-014-2724-7 Google Scholar
  50. 50.
    Talaczyńska A, Lewandowska K, Garbacki P, Zalewski P, Skibiński R, Miklaszewski A, Mizera M, Cielecka-Piontek J (2016) Drug Dev Ind Pharm 42:238–244.  https://doi.org/10.3109/03639045.2015.1044902 Google Scholar
  51. 51.
    Zalewski P, Skibiński R, Paczkowska M, Garbacki P, Talaczyńska A, Cielecka-Piontek J, Jelińska A (2016) Drug Dev Ind Pharm 42:572–577.  https://doi.org/10.3109/03639045.2015.1054834 Google Scholar
  52. 52.
    Zalewski P, Skibiński R, Szymanowska-Powałowska D, Piotrowska H, Kozak M, Pietralik Z, Bednarski W, Cielecka-Piontek J (2016) J Pharm Biomed Anal 118:410–416.  https://doi.org/10.1016/j.jpba.2015.11.008 Google Scholar
  53. 53.
    Zalewski P, Skibiński R, Talaczyńska A, Paczkowska M, Garbacki P, Cielecka-Piontek J (2015) J Pharm Biomed Anal 114:222–226.  https://doi.org/10.1016/j.jpba.2015.05.033 Google Scholar
  54. 54.
    Tam J, Ahmad IAH, Blasko A (2018) J Pharm Biomed Anal 155:288–297.  https://doi.org/10.1016/j.jpba.2018.03.067 Google Scholar
  55. 55.
    Mehmet G, Gokhan CM, Feyyaz O, A. OS (2018) Biomed Chromatogr 32:e4158.  https://doi.org/10.1002/bmc.4158 DOIGoogle Scholar
  56. 56.
    Defaix C, Solgadi A, Pham TH, Gardier AM, Chaminade P, Tritschler L (2018) J Pharm Biomed Anal 152:31–38.  https://doi.org/10.1016/j.jpba.2018.01.039 Google Scholar
  57. 57.
    Zhang Y, Zou Z, Chou G (2018) Anal Methods 10:1325–1330.  https://doi.org/10.1039/c8ay00046h Google Scholar
  58. 58.
    Wu Y, Guo H, Bu J, Tan Y, Zhong J, Zhao Q (2018) J Chromatogr B: Anal Technol Biomed Life Sci 1076:22–28.  https://doi.org/10.1016/j.jchromb.2018.01.012 Google Scholar
  59. 59.
    Yıldırım S, Ulaş Çolak N, Yaşar A (2018) J Liq Chromatogr Relat Technol 41:66–72.  https://doi.org/10.1080/10826076.2017.1373669 Google Scholar
  60. 60.
    Armentano A, Summa S, Lo Magro S, Palermo C, Nardiello D, Centonze D, Muscarella M (2018) J Chromatogr A 1531:46–52.  https://doi.org/10.1016/j.chroma.2017.11.015 Google Scholar
  61. 61.
    Patel B, Wene D, Fan ZT (2017) J Pharm Biomed Anal 146:15–23.  https://doi.org/10.1016/j.jpba.2017.07.021 Google Scholar
  62. 62.
    Akula VK, Sinha BN, Seok HJ (2017) Indian J Pharm Educ Res 51:S769–S775.  https://doi.org/10.5530/ijper.51.4s.111 Google Scholar
  63. 63.
    Michael AM, Shalliker RA (2017) Anal Methods 9:4514–4519.  https://doi.org/10.1039/c7ay01505d Google Scholar
  64. 64.
    Kastner P, Pilarova P, Nejedly T, Machacek M, Klimes J (2017) Curr Pharm Anal 13:250–255.  https://doi.org/10.2174/1573412912666160518145632 Google Scholar
  65. 65.
    Czerniak K, Cielecka-Piontek J, Zalewski P (2017) Acta Poloniae Pharmaceutica Drug Res 74:1637–1643Google Scholar
  66. 66.
    Zheng L, Huo XK, Wang C, Cong HJ, Xiang T, Wu B, Zhang BJ, Huang SS, Zhang L, Ma XC (2016) Anal Methods 8:3359–3365.  https://doi.org/10.1039/c6ay00143b Google Scholar
  67. 67.
    Ragab GH, Saleh HM, El-Henawee MM, Elsayed OF (2016) J Appl Pharm Sci 6:064–071.  https://doi.org/10.7324/JAPS.2016.60209 Google Scholar
  68. 68.
    Montemurro M, De Zan MM, Robles JC (2016) J Pharm Anal 6:103–111.  https://doi.org/10.1016/j.jpha.2015.12.001 Google Scholar
  69. 69.
    Mohamed AMI, Abdel-Wadood HM, Mousa HS (2016) New J Chem 40:8424–8437.  https://doi.org/10.1039/c5nj03719k Google Scholar
  70. 70.
    Kučera L, Fanali S, Aturki Z, Pospíšil T, Bednář P (2016) J Chromatogr A 1428:126–133.  https://doi.org/10.1016/j.chroma.2015.09.074 Google Scholar
  71. 71.
    Jiang H, Liao X, Wood CM, Xiao CW, Feng YL (2016) J Chromatogr B: Anal Technol Biomed Life Sci 1012–1013:106–112.  https://doi.org/10.1016/j.jchromb.2016.01.020 Google Scholar
  72. 72.
    Ishihara Y, Sugita H, Takano J, Kitami H (2016) Bunseki Kagaku 65:87–92.  https://doi.org/10.2116/bunsekikagaku.65.87 Google Scholar
  73. 73.
    Fontana AR, Antoniolli A, Bottini R (2016) Food Chem 192:1–8.  https://doi.org/10.1016/j.foodchem.2015.06.101 Google Scholar
  74. 74.
    Fibigr J, Šatínský D, Havlíková L, Solich P (2016) J Pharm Biomed Anal 120:383–390.  https://doi.org/10.1016/j.jpba.2015.12.039 Google Scholar
  75. 75.
    Bertolini T, Vicentini L, Boschetti S, Andreatta P, Gatti R (2016) J Pharm Biomed Anal 129:198–202.  https://doi.org/10.1016/j.jpba.2016.07.001 Google Scholar
  76. 76.
    Baghdikian B, Filly A, Fabiano-Tixier AS, Petitcolas E, Mabrouki F, Chemat F, Ollivier E (2016) C R Chim 19:692–698.  https://doi.org/10.1016/j.crci.2016.02.020 Google Scholar
  77. 77.
    Ali I, Rani D, Al-Othman ZA (2016) J Liq Chromatogr Relat Technol 39:339–345.  https://doi.org/10.1080/10826076.2016.1152583 Google Scholar
  78. 78.
    Song Q, Song Y, Zhang N, Li J, Jiang Y, Zhang K, Zhang Q, Tu P (2015) RSC Adv 5:57372–57382.  https://doi.org/10.1039/c5ra09429a Google Scholar
  79. 79.
    Mizera M, Talaczyńska A, Zalewski P, Skibiński R, Cielecka-Piontek J (2015) Talanta 137:174–181.  https://doi.org/10.1016/j.talanta.2015.01.032 Google Scholar
  80. 80.
    Marley A, Stalcup AM, Connolly D (2015) J Pharm Biomed Anal 102:261–266.  https://doi.org/10.1016/j.jpba.2014.09.023 Google Scholar
  81. 81.
    Mahesh HRK, Sudhakar Babu K (2015) Res J Pharm Technol 8:172–176.  https://doi.org/10.5958/0974-360X.2015.00031.1 Google Scholar
  82. 82.
    Gumustas M, Coskun G, Ozkan SA (2015) Rev Roum Chim 60:477–490Google Scholar
  83. 83.
    Gumustas M, Alshana U, Ertas N, Goger NG, Ozkan SA, Uslu B (2015) Journal of Pharmaceutical and Biomedical Analysis.  https://doi.org/10.1016/j.jpba.2016.02.032
  84. 84.
    Gras CC, Carle R, Schweiggert RM (2015) J Food Compos Anal 44:170–177.  https://doi.org/10.1016/j.jfca.2015.08.011 Google Scholar
  85. 85.
    Feng YL, Liao X, Grenier G, Nguyen N, Chan P (2015) Anal Methods 7:8048–8059.  https://doi.org/10.1039/c5ay00107b Google Scholar
  86. 86.
    Chebrolu KK, Yousef GG, Park R, Tanimura Y, Brown AF (2015) J Chromatogr B: Anal Technol Biomed Life Sci 1001:41–48.  https://doi.org/10.1016/j.jchromb.2015.07.025 Google Scholar
  87. 87.
    Vetter F, Pohl J, Pohl B, Bracher F (2014) Pharmazie 69:455–457.  https://doi.org/10.1691/ph.2014.3188 Google Scholar
  88. 88.
    Tölgyesi T, Tölgyesi L, Békési K, Sharma VK, Fekete J (2014) Meat Sci 96:1332–1339.  https://doi.org/10.1016/j.meatsci.2013.11.011 Google Scholar
  89. 89.
    Tölgyesi T, Sharma VK, Fekete J (2014) J Pharm Biomed Anal 88:45–52.  https://doi.org/10.1016/j.jpba.2013.08.019 Google Scholar
  90. 90.
    Saraiva FRS, Inoue TY, Camargo SS, Malheiros A, da Silva RML, Bresolin TMB (2014) Curr Pharm Anal 10:169–174.  https://doi.org/10.2174/1573412910666140524003218 Google Scholar
  91. 91.
    Martano G, Bojaxhi E, Forstenlehner IC, Huber CG, Bresgen N, Eckl PM, Stutz H (2014) Anal Bioanal Chem 406:2909–2924.  https://doi.org/10.1007/s00216-014-7725-8 Google Scholar
  92. 92.
    Hurtado-Sánchez MDC, Espinosa-Mansilla A, Rodríguez-Cáceres MI, Durán-Merás I (2014) J Agric Food Chem 62:97–106.  https://doi.org/10.1021/jf404180t Google Scholar
  93. 93.
    Gómez-Caravaca AM, Verardo V, Berardinelli A, Marconi E, Caboni MF (2014) J Chromatogr A 1355:134–142.  https://doi.org/10.1016/j.chroma.2014.06.007 Google Scholar
  94. 94.
    Acquaviva A, Romero L, Castells C, Ramis-Ramos G, Herrero-Martinez JM (2014) Anal Methods 6:5830–5837.  https://doi.org/10.1039/c4ay00496e Google Scholar
  95. 95.
    Yamamori K, Watanabe T, Inada M, Wakayama T, Kanda M, Nakate T, Kitamura S (2013) Bunseki Kagaku 62:333–338.  https://doi.org/10.2116/bunsekikagaku.62.333 Google Scholar
  96. 96.
    Tölgyesi Á, Kunsági Z (2013) Microchem J 106:300–306.  https://doi.org/10.1016/j.microc.2012.08.012 Google Scholar
  97. 97.
    Mao J, Lei S, Yang X, Xiao D (2013) Food Control 32:505–511.  https://doi.org/10.1016/j.foodcont.2013.01.016 Google Scholar
  98. 98.
    La Nasa J, Ghelardi E, Degano I, Modugno F, Colombini MP (2013) J Chromatogr A 1308:114–124.  https://doi.org/10.1016/j.chroma.2013.08.015 Google Scholar
  99. 99.
    Kučerová B, Krčmová L, Solichová D, Plíšek J, Solich P (2013) J Sep Sci 36:2223–2230.  https://doi.org/10.1002/jssc.201300242 Google Scholar
  100. 100.
    Judge MD, Aab C (2013) Can J Chem 91:352–356.  https://doi.org/10.1139/cjc-2012-0381 Google Scholar
  101. 101.
    Bardarov V, Dinchev D, Bardarov K (2013) J Univ Chem Technol Metall 48:341–346Google Scholar
  102. 102.
    Tzanavaras PD, Karakosta TD, Rigas PG, Themelis DG, Zotou A (2012) Cent Eur J Chem 10:1459–1463.  https://doi.org/10.2478/s11532-012-0091-5 Google Scholar
  103. 103.
    Tölgyesi Á, Sharma VK, Fekete S, Lukonics D, Fekete J (2012) J Chromatogr B: Anal Technol Biomed Life Sci 906:75–84.  https://doi.org/10.1016/j.jchromb.2012.08.033 Google Scholar
  104. 104.
    Tölgyesi Á, Sharma VK, Fekete S, Fekete J, Simon A, Farkas S (2012) J Pharm Biomed Anal 64–65:40–48.  https://doi.org/10.1016/j.jpba.2012.02.013 Google Scholar
  105. 105.
    Tölgyesi Á, Fekete J, Fekete S, Sharma VK, Békési K, Tóth E (2012) J Chromatogr Sci 50:190–198.  https://doi.org/10.1093/chromsci/bmr046 Google Scholar
  106. 106.
    Hroch M, Havlínová Z, Nobilis M, Chládek J (2012) J Chromatogr B: Anal Technol Biomed Life Sci 880:90–99.  https://doi.org/10.1016/j.jchromb.2011.11.022 Google Scholar
  107. 107.
    Baecher S, Leinenbach A, Wright JA, Pongratz S, Kobold U, Thiele R (2012) Clin Biochem 45:1491–1496.  https://doi.org/10.1016/j.clinbiochem.2012.06.030 Google Scholar
  108. 108.
    Samanidou VF, Karageorgou EG (2011) Drug Testing Analysis 3:234–244.  https://doi.org/10.1002/dta.218 Google Scholar
  109. 109.
    Koerner PJ, Jarrett D, Layne J (2011) LCGC N Am 29:44–46Google Scholar
  110. 110.
    Abrahim A, Al-Sayah M, Skrdla P, Bereznitski Y, Chen Y, Wu N (2010) J Pharm Biomed Anal 51:131–137.  https://doi.org/10.1016/j.jpba.2009.08.023 Google Scholar
  111. 111.
    Wang S, Wen J, Cui L, Zhang X, Wei H, Xie R, Feng B, Wu Y, Fan G (2010) J Pharm Biomed Anal 51:889–893.  https://doi.org/10.1016/j.jpba.2009.09.046 Google Scholar
  112. 112.
    Zheng J, Patel D, Tang Q, Markovich RJ, Rustum AM (2009) J Pharm Biomed Anal 50:815–822.  https://doi.org/10.1016/j.jpba.2009.06.042 Google Scholar
  113. 113.
    Hsieh Y, Duncan CJG, Brisson J-M (2007) Anal Chem 79:5668–5673.  https://doi.org/10.1021/ac070343g Google Scholar
  114. 114.
    Rogers LA, Crews KE, Long SG, Patterson KM, McCune JE (2009) J Liq Chromatogr Relat Technol 32:2246–2264.  https://doi.org/10.1080/10826070903163057 Google Scholar
  115. 115.
    Vass A, Robles-Molina J, Perez-Ortega P, Gilbert-Lopez B, Dernovics M, Molina-Diaz A, Garcia-Reyes JF (2016) Anal Bioanal Chem 408:4857–4869.  https://doi.org/10.1007/s00216-016-9589-6 Google Scholar
  116. 116.
    Chauve B, Guillarme D, Cleon P, Veuthey JL (2010) J Sep Sci 33:752–764.  https://doi.org/10.1002/jssc.200900749 Google Scholar
  117. 117.
    Paczkowska M, Mizera M, Tężyk A, Zalewski P, Dzitko J, Cielecka-Piontek JA J Chem.  https://doi.org/10.1016/j.arabjc.2016.05.012
  118. 118.
    Gumustas M, Ozkan SA, Chankvetadze B (2016) J Chromatogr A 1467:297–305.  https://doi.org/10.1016/j.chroma.2016.08.011 Google Scholar
  119. 119.
    Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Chankvetadze L, Chity M, Farkas T, Chankvetadze B (2017) J Chromatogr A 1482:32–38.  https://doi.org/10.1016/j.chroma.2016.12.055 Google Scholar
  120. 120.
    Chankvetadze B (2012) J Chromatogr A 1269:26–51.  https://doi.org/10.1016/j.chroma.2012.10.033 Google Scholar
  121. 121.
    Chankvetadze B (2017) Liquid chromatographic separation of enantiomers. In: Liquid chromatography: applications, 2. Elsevier Inc., Oxford, pp. 69–86Google Scholar
  122. 122.
    D’Orazio G, Fanali C, Karchkhadze M, Chankvetadze B, Fanali S (2017) J Chromatogr A 1520:127–134.  https://doi.org/10.1016/j.chroma.2017.09.017 Google Scholar
  123. 123.
    Khatiashvili T, Kakava R, Matarashvili I, Tabani H, Fanali C, Volonterio A, Farkas T, Chankvetadze B (2018) J Chromatogr A 1545:59–66.  https://doi.org/10.1016/j.chroma.2018.02.054 Google Scholar
  124. 124.
    Lomsadze K, Jibuti G, Farkas T, Chankvetadze B (2012) J Chromatogr A 1234:50–55.  https://doi.org/10.1016/j.chroma.2012.01.084 Google Scholar
  125. 125.
    Shedania Z, Kakava R, Volonterio A, Farkas T, Chankvetadze B (2018) J Chromatogr A 1557:62–74.  https://doi.org/10.1016/j.chroma.2018.05.002 Google Scholar
  126. 126.
    Cabooter D, Fanigliulo A, Bellazzi G, Allieri B, Rottigni A, Desmet G (2010) J Chromatogr A 1217:7074–7081.  https://doi.org/10.1016/j.chroma.2010.09.008 Google Scholar
  127. 127.
    Gritti F, Perdu MA, Guiochon G (2012) J Chromatogr A 1229:148–155.  https://doi.org/10.1016/j.chroma.2012.01.013 Google Scholar
  128. 128.
    Wu X, You L, Di B, Hao W, Su M, Gu Y, Shen L (2013) J Chromatogr A 1299:78–84.  https://doi.org/10.1016/j.chroma.2013.05.051 Google Scholar
  129. 129.
    Alessia C, IO H, Giulia M, Claudio V, Francesco G (2018) J Sep Sci 41:1307–1318.  https://doi.org/10.1002/jssc.201701406 DOIGoogle Scholar
  130. 130.
    Catani M, Felletti S, Ismail OH, Gasparrini F, Pasti L, Marchetti N, De Luca C, Costa V, Cavazzini A (2018) Anal Bioanal Chem 410:2457–2465.  https://doi.org/10.1007/s00216-017-0842-4 Google Scholar
  131. 131.
    Bezhitashvili L, Bardavelidze A, Mskhiladze A, Gumustas M, Ozkan SA, Volonterio A, Farkas T, Chankvetadze B (2018) J Chromatogr A 1571:132–139.  https://doi.org/10.1016/j.chroma.2018.08.011 Google Scholar
  132. 132.
    Takeuchi T (2003) Anal Bioanal Chem 375:26–27.  https://doi.org/10.1007/s00216-002-1619-x Google Scholar
  133. 133.
    Bruns S, Grinias JP, Blue LE, Jorgenson JW, Tallarek U (2012) Anal Chem 84:4496–4503.  https://doi.org/10.1021/ac300326k Google Scholar
  134. 134.
    Avery RG, Ramsay JDF (1973) J Colloid Interface Sci 42:597–606.  https://doi.org/10.1016/0021-9797(73)90046-5 Google Scholar
  135. 135.
    Colon LA, Maloney TD, Fermier AM (2000) J Chromatogr A 887:43–53Google Scholar
  136. 136.
    Boughtflower RJ, Underwood T, Paterson CJ (1995) Chromatographia 40:329–335.  https://doi.org/10.1007/bf02290365 Google Scholar
  137. 137.
  138. 138.
    Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184:393–415.  https://doi.org/10.1016/j.chroma.2007.11.118 Google Scholar
  139. 139.
    Fanali C, Rocco A, Aturki Z, Mondello L, Fanali S (2012) J Chromatogr A 1234:38–44.  https://doi.org/10.1016/j.chroma.2011.12.103 Google Scholar
  140. 140.
    Fanali S, D’Orazio G, Farkas T, Chankvetadze B (2012) Journal of chromatography. A 1269:136–142.  https://doi.org/10.1016/j.chroma.2012.06.021 Google Scholar
  141. 141.
    Fanali S, Rocchi S, Chankvetadze B (2013) Electrophoresis 34:1737–1742.  https://doi.org/10.1002/elps.201200639 Google Scholar
  142. 142.
    Wagner BM, Schuster SA, Boyes BE, Kirkland JJ (2012) J Chromatogr A 1264:22–30.  https://doi.org/10.1016/j.chroma.2012.09.052 Google Scholar
  143. 143.
    Ruta J, Guillarme D, Rudaz S, Veuthey JL (2010) J Sep Sci 33:2465–2477.  https://doi.org/10.1002/jssc.201000023 Google Scholar
  144. 144.
    Ruta J, Zurlino D, Grivel C, Heinisch S, Veuthey JL, Guillarme D (2012) J Chromatogr A 1228:221–231.  https://doi.org/10.1016/j.chroma.2011.09.013 Google Scholar
  145. 145.
    Preti R (2016) Int J Anal Chem.  https://doi.org/10.1155/2016/3189724 Google Scholar
  146. 146.
    Preti R, Antonelli ML, Bernacchia R, Vinci G (2015) Food Chem 187:555–562.  https://doi.org/10.1016/j.foodchem.2015.04.075 Google Scholar
  147. 147.
    Vinci G, Antonelli ML, Preti R (2013) J Sep Sci 36:461–468.  https://doi.org/10.1002/jssc.201200854 Google Scholar
  148. 148.
    Zhang P, Bui A, Rose G, Allinson G (2014) Journal of chromatography. A 1325:56–64.  https://doi.org/10.1016/j.chroma.2013.12.021 Google Scholar
  149. 149.
    Marhol P, Gazak R, Bednar P, Kren V (2011) J Sep Sci 34:2206–2213.  https://doi.org/10.1002/jssc.201100309 Google Scholar
  150. 150.
    Gritti F, Guiochon G (2014) J Chromatogr A 1333:60–69.  https://doi.org/10.1016/j.chroma.2014.01.061 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forensic Toxicology, Institute of Forensic SciencesAnkara UniversityAnkaraTurkey
  2. 2.Department of Pharmacognosy, Faculty of PharmacyPoznan University of Medical SciencesPoznanPoland
  3. 3.Department of Analytical Chemistry, Faculty of PharmacyAnkara UniversityAnkaraTurkey

Personalised recommendations