, Volume 82, Issue 1, pp 197–209 | Cite as

Reversed-Phase Functionalised Multi-lumen Capillary as Combined Concentrator, Separation Column, and ESI Emitter in Capillary-LC–MS

  • Estrella Sanz Rodriguez
  • Shing Chung Lam
  • Paul R. Haddad
  • Brett PaullEmail author
Part of the following topical collections:
  1. 50th Anniversary Commemorative Issue


For the first time, a multi-lumen capillary (MLC) (126 parallel channels of 4.2 µm i.d) has been modified to produce a C18-functionalised silica porous layer open tubular (PLOT) capillary column for both on-capillary preconcentration and separation. The modified multi-lumen capillary used in this dual mode provided significant advantages over typical nano/capillary-LC–MS systems, in that it facilitated both higher sample loading capacity, the use of elevated flow rates, and simplified equipment requirements. Following modification, 100% of the channels displayed a homogenous porous silica layer, 257 ± 36 nm thick. The PLOT-MLC was first evaluated for on-capillary solid-phase extraction. Extraction of caffeine, ofloxacin, atrazine, and diuron was carried out offline using an 8-cm-long PLOT-MLC, with quantification achieved using HPLC coupled to a quadrupole-time of flight (QTOF) mass spectrometer. The results confirmed reversed-phase selectivity and average recoveries obtained were around 70%. Subsequently, a 65-cm-long PLOT-MLC was evaluated as a separator column using a capillary liquid chromatography (Cap-LC) system equipped with a nano-injector and coupled to the mass spectrometer. The short PLOT-MLC provided a baseline separation in isocratic mode [water:acetonitrile (each with 0.1% formic acid) = 70:30, v/v] of ofloxacin, atrazine, and diuron. Finally, direct coupling of the PLOT-MLC with the QTOF via a capillary electrosprayer facilitated the simultaneous use of the modified capillary as a solid-phase concentrator, separator column (carrying out concentration-focusing-separation on the PLOT-MLC) and electrospray emitter. This configuration greatly simplifies the traditional capillary-LC–MS equipment requirements, via the removal of all connectors and additional capillary between injector and MS inlet, and is demonstrated herein with large volume sample loading and step-gradient elution/separation with sensitive MS detection.


Liquid chromatography Mass spectrometry Multi-lumen capillary C18-funtionalised fused silica Porous layer open tubular columns 



The authors wish to acknowledge the Australian Research Council for funding (Grant IC140100022). We would also like to acknowledge the help of Christopher Broinowski, Dr. Sandrin T. Feig, and Dr. Karsten Goemann of the Central Science Laboratory, University of Tasmania, and Petr Smejkal from ACROSS, for the provision of technical support.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2018_3629_MOESM1_ESM.docx (864 kb)
Supplementary material 1 (DOCX 864 KB)


  1. 1.
    Hara T, Futagami S, Eeltink S, De Malsche W, Baron GV, Desmet G (2016) Very high efficiency porous silica layer open-tubular capillary columns produced via in-column sol–gel processing. Anal Chem 88(20):10158–10166CrossRefGoogle Scholar
  2. 2.
    Causon TJ, Shellie RA, Hilder EF, Desmet G, Eeltink S (2011) Kinetic optimisation of open-tubular liquid-chromatography capillaries coated with thick porous layers for increased loadability. J Chromatogr A 1218(46):8388–8393. CrossRefGoogle Scholar
  3. 3.
    Jorgenson JW, Guthrie EJ (1983) Liquid chromatography in open-tubular columns. Theory of column optimization with limited pressure and analysis time, and fabrication of chemically bonded reversed-phase columns on etched borosilicate glass capillaries. J Chromatogr A 255(C):335–348. CrossRefGoogle Scholar
  4. 4.
    Kazarian AA, Sanz Rodriguez E, Deverell JA, McCord J, Muddiman DC, Paull B (2016) Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography. Anal Chim Acta 905:1–7. CrossRefGoogle Scholar
  5. 5.
    Pesek JJ, Matyska MT (1997) Column technology in capillary electrophoresis and capillary electrochromatography. Electrophoresis 18(12–13):2228–2238. CrossRefGoogle Scholar
  6. 6.
    Pesek JJ, Matyska MT (2000) Open tubular capillary electrokinetic chromatography in etched fused-silica tubes. J Chromatogr A 887(1–2):31–41. CrossRefGoogle Scholar
  7. 7.
    Collins DA, Nesterenko EP, Brabazon D, Paull B (2013) In-process phase growth measurement technique in the fabrication of monolithic porous layer open tubular (monoPLOT) columns using capacitively coupled contactless conductivity. Analyst 138(9):2540–2545. CrossRefGoogle Scholar
  8. 8.
    Peng L, Zhu M, Zhang L, Liu H, Zhang W (2016) Preparation and evaluation of 3 m open tubular capillary columns with a zwitterionic polymeric porous layer for liquid chromatography. J Sep Sci 39(19):3736–3744. CrossRefGoogle Scholar
  9. 9.
    Wang H, Yao Y, Li Y, Ma S, Peng X, Ou J, Ye M (2017) Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC–MS/MS analysis of tryptic digest. Anal Chim Acta 979:58–65. CrossRefGoogle Scholar
  10. 10.
    Wang D, Hincapie M, Rejtar T, Karger BL (2011) Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 µm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal Chem 83(6):2029–2037. CrossRefGoogle Scholar
  11. 11.
    Rogeberg M, Wilson SR, Greibrokk T, Lundanes E (2010) Separation of intact proteins on porous layer open tubular (PLOT) columns. J Chromatogr A 1217(17):2782–2786CrossRefGoogle Scholar
  12. 12.
    Rogeberg M, Vehus T, Grutle L, Greibrokk T, Wilson SR, Lundanes E (2013) Separation optimization of long porous-layer open-tubular columns for nano-LC–MS of limited proteomic samples. J Sep Sci 36(17):2838–2847CrossRefGoogle Scholar
  13. 13.
    Thakur D, Rejtar T, Wang D, Bones J, Cha S, Clodfelder-Miller B, Richardson E, Binns S, Dahiya S, Sgroi D, Karger BL (2011) Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. J Chromatogr A 1218(45):8168–8174. CrossRefGoogle Scholar
  14. 14.
    Tock PPH, Stegeman G, Peerboom R, Poppe H, Kraak JC, Unger KK (1987) The application of porous silica layers in open tubular columns for liquid chromatography. Chromatographia 24(1):617–624CrossRefGoogle Scholar
  15. 15.
    Guo Y, Colón LA (1995) A Stationary phase for open tubular liquid chromatography and electrochromatography using sol–gel technology. Anal Chem 67(15):2511–2516. CrossRefGoogle Scholar
  16. 16.
    Guo Y, Colón LA (1995) Modification of the inner capillary surface by the sol–gel method: application to open tubular electrochromatography. J Microcolumn Sep 7(5):485–491. CrossRefGoogle Scholar
  17. 17.
    Guo Y, Colón LA (1996) Open tubular liquid chromatography using a sol–gel derived stationary phase. Chromatographia 43(9–10):477–483CrossRefGoogle Scholar
  18. 18.
    Detobel F, Eghbali H, De Bruyne S, Terryn H, Gardeniers H, Desmet G (2009) Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths. J Chromatogr A 1216(44):7360–7367. CrossRefGoogle Scholar
  19. 19.
    Detobel F, De Bruyne S, Vangelooven J, De Malsche W, Aerts T, Terryn H, Gardeniers H, Eeltink S, Desmet G (2010) Fabrication and chromatographic performance of porous-shell pillar-array columns. Anal Chem 82(17):7208–7217. CrossRefGoogle Scholar
  20. 20.
    Forster S, Kolmar H, Altmaier S (2013) Preparation and kinetic performance assessment of thick film 10–20 µm open tubular silica capillaries in normal phase high pressure liquid chromatography. J Chromatogr A 1315:127–134. CrossRefGoogle Scholar
  21. 21.
    Hara T, Mascotto S, Weidmann C, Smarsly BM (2011) The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. J Chromatogr A 1218(23):3624–3635. CrossRefGoogle Scholar
  22. 22.
    Hara T, Desmet G, Baron GV, Minakuchi H, Eeltink S (2016) Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns. J Chromatogr A 1442:42–52. CrossRefGoogle Scholar
  23. 23.
    Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N (2006) Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Anal Chem 78(22):7632–7642. CrossRefGoogle Scholar
  24. 24.
    Vehus T, Roberg-Larsen H, Waaler J, Aslaksen S, Krauss S, Wilson SR, Lundanes E (2016) Versatile, sensitive liquid chromatography mass spectrometry-Implementation of 10 µm OT columns suitable for small molecules, peptides and proteins. Sci Rep. Google Scholar
  25. 25.
    Xu L, Xu B, Zhao ZY, Yang HP, Tang C, Dong LY, Liu K, Fu L, Wang XH (2017) Preparation and characterization of micro-cell membrane chromatographic column with N-hydroxysuccinimide group-modified silica-based porous layer open tubular capillary. J Chromatogr A 1516:125–130. CrossRefGoogle Scholar
  26. 26.
    Knob R, Kulsing C, Boysen RI, Macka M, Hearn MTW (2015) Surface-area expansion with monolithic open tubular columns. TrAC Trends Anal Chem 67:16–25. CrossRefGoogle Scholar
  27. 27.
    Rogers B, Gibson GTT, Oleschuk RD (2011) Bundled capillary electrophoresis using microstructured fibres. Electrophoresis 32(2):223–229. CrossRefGoogle Scholar
  28. 28.
    Sun Y, Nguyen NT, Kwok YC (2009) Enhanced electrophoretic DNA separation in photonic crystal fiber. Anal Bioanal Chem 394(6):1707–1710. CrossRefGoogle Scholar
  29. 29.
    Tůma P, Opekar F, Samcová E, Štulík K (2013) The use of a multichannel capillary for electrophoretic separations of mixtures of clinically important substances with contactless conductivity and UV photometric detection. Electrophoresis 34(14):2058–2064. CrossRefGoogle Scholar
  30. 30.
    Mugo SM, Huybregts L, Mazurok J (2014) A porous layer open tubular monolith on microstructured optical fibre for microextraction and online GC–MS applications. Anal Methods 6(5):1291–1295. CrossRefGoogle Scholar
  31. 31.
    Daley AB, Wright RD, Oleschuk RD (2011) Parallel, fluorous open-tubular chromatography using microstructured fibers. Anal Chim Acta 690(2):253–262. CrossRefGoogle Scholar
  32. 32.
    Brandtzaeg OK, Røen BT, Enger S, Lundanes E, Wilson SR (2017) Multichannel open tubular enzyme reactor online coupled with mass spectrometry for detecting ricin. Anal Chem 89(17):8667–8673. CrossRefGoogle Scholar
  33. 33.
    da Silva MR, Brandtzaeg OK, Vehus T, Lanças FM, Wilson SR, Lundanes E (2017) An automated and self-cleaning nano liquid chromatography mass spectrometry platform featuring an open tubular multi-hole crystal fiber solid phase extraction column and an open tubular separation column. J Chromatogr A. Google Scholar
  34. 34.
    Meyer RF, Champlin PB, Hartwick RA (1983) Theory of multicapillary columns for HPLC. J Chromatogr Sci 21(10):433–438. CrossRefGoogle Scholar
  35. 35.
    Belov YP, Ulyanova MM, Sidelnikov VN (2005) Multicapillary columns for chromatography. Am Lab 37(6):42–46Google Scholar
  36. 36.
    Fu Y, Gibson GTT, McGregor C, Oleschuk RD (2015) Fabrication of a polymer nozzle array in a microstructured fibre as a nanoelectrospray emitter for mass spectrometry. Can J Chem 93(4):477–484. CrossRefGoogle Scholar
  37. 37.
    Su S, Gibson GTT, Mugo SM, Marecak DM, Oleschuk RD (2009) Microstructured photonic fibers as multichannel electrospray emitters. Anal Chem 81(17):7281–7287. CrossRefGoogle Scholar
  38. 38.
    Fu Y, Gibson GTT, Proulx A, Croteau A, Schneider BB, Covey TR, Oleschuk RD (2015) Polymer micronozzle array for multiple electrosprays produced by templated synthesis and etching of microstructured fibers. Anal Chem 87(1):747–753. CrossRefGoogle Scholar
  39. 39.
    Tock PPH, Duijsters PPE, Kraak JC, Poppe H (1990) Theoretical optimization of open-tubular columns for liquid chromatography with respect to mass loadability. J Chromatogr A 506(C):185–200. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Australian Centre for Research on Separation Science (ACROSS), and ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations