, Volume 81, Issue 8, pp 1127–1133 | Cite as

Excess Adsorption of Organic Eluent Components from Mobile Phases Containing Electrolytes

  • Junji Ohashi
  • Makoto Harada
  • Tetsuo Okada


The excess adsorption isotherms of organic eluent components from solutions containing electrolytes on a C18-bonded stationary phase are investigated by frontal analysis in staircase mode. The excess adsorption of acetonitrile increases when NaHSO4, NaH2PO4, NaCl, or NaOAc is added to the eluent, but decreases upon addition of NaBr or NaClO4. The excess adsorption of acetonitrile increases in the order of NaCl, NaHSO4, NaH2PO4 > NaOAc > NaBr, NaClO4. On the other hand, the effect of electrolyte addition on the excess adsorption of methanol is not significant. The effect of electrolytes on the retention of alkylbenzenes in reversed-phase liquid chromatography is discussed on the basis of the excess adsorption of organic eluent components. The retention of alkylbenzenes shows negative correlation with the excess adsorption of acetonitrile. This indicates that the acetonitrile layer on the stationary phase does not act as a part of the stationary phase. A developed acetonitrile layer reduces the retention of alkylbenzenes by the competitive adsorption at the interface between the organic layer and the stationary phase.


Reversed-phase liquid chromatography Excess adsorption Retention mechanism Electrolyte 



The authors are grateful to Ms. T. Oata, Ms. A. Eto, Ms. S. Oguma and Dr. N. Suzuki (Daiichi Sankyo, Japan) for their continuous encouragement.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest in relation to this research.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2018_3552_MOESM1_ESM.pdf (275 kb)
Supplementary material 1 (PDF 275 KB)


  1. 1.
    García-Álvarez-Coque MC, Torres-Lapasió JR, Baeza-Baeza JJ (2006) Models and objective functions for the optimization of selectivity in reversed-phase liquid chromatography. Anal Chim Acta 579:125–145CrossRefPubMedGoogle Scholar
  2. 2.
    Nikitas P, Pappa-Louisi A (2009) Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. J Chromatogr A 1216:1737–1755CrossRefPubMedGoogle Scholar
  3. 3.
    Valkó K, Snyder LR, Galjch JL (1993) Retention in reversed-phase liquid chromatography as a function of mobile-phase composition. J Chromatogr A 656:501–520CrossRefGoogle Scholar
  4. 4.
    Knox JH, Pryde A (1975) Performance and selected applications of a new range of chemically bonded packing materials in high-performance liquid chromatography. J Chromatogr A 112:171–188CrossRefGoogle Scholar
  5. 5.
    Kazakevich YV, LoBrutto R, Chan F, Patel T (2001) Interpretation of the excess adsorption isotherms of organic eluent components on the surface of reversed-phase adsorbents effect on the analyte retention. J Chromatogr A 913:75–87CrossRefPubMedGoogle Scholar
  6. 6.
    Buszewski B, Bocian S, Felinger A (2008) Excess isotherms as a new way for characterization of the columns for reversed-phase liquid chromatography. J Chromatogr A 1191:72–77CrossRefPubMedGoogle Scholar
  7. 7.
    Gritti F, Guiochon G (2007) Thermodynamics of adsorption of binary aqueous organic liquid mixtures on a RPLC adsorbent. J Chromatogr A 1155:85–99CrossRefPubMedGoogle Scholar
  8. 8.
    Buntz S, Figus M, Liu Z, Kazakevich YV (2012) Excess adsorption of binary aqueous organic mixtures on various reversed-phase packing materials. J Chromatogr A 1240:104–112CrossRefPubMedGoogle Scholar
  9. 9.
    Bocian S, Soukup J, Jandera P, Buszewski B (2015) Thermodynamics study of solvent adsorption on octadexyl-modified silica. Chromatographia 78:21–30CrossRefPubMedGoogle Scholar
  10. 10.
    Chan F, Yeung LS, LoBrutto R, Kazakevich YV (2005) Interpretation of the excess adsorption isotherms of organic eluent components on the surface of reversed-phase phenyl modified adsorbents. J Chromatogr A 1082:158–165CrossRefPubMedGoogle Scholar
  11. 11.
    Kazakevich YV, McNair HM (1995) Study of the excess adsorption of the eluent components on different reversed-phase adsorbents. J Chromatogr Sci 33:321–327CrossRefGoogle Scholar
  12. 12.
    Bocian S, Vajda P, Felinger A, Buszewski B (2009) Excess adsorption of commonly used organic solvents from water on nonend-capped C18-bonded phases in reversed-phase liquid chromatography. Anal Chem 81:6334–6346CrossRefGoogle Scholar
  13. 13.
    Wang M, Avula B, Wang YH, Parcher JF, Khan IA (2012) Comparison of concentration pulse and tracer pulse chromatography: experimental determination of eluent uptake by bridge-ethylene hybrid ultra-high performance liquid chromatography packings. J Chromatogr A 1220:75–81CrossRefPubMedGoogle Scholar
  14. 14.
    Mallete J, Wang M, Parcher JF (2010) Multicomponent (n ≥ 3) sorption isotherms in reversed-phase liquid chromatography: the effect of immobilized eluent on the retention of analytes. Anal Chem 82:3329–3336CrossRefGoogle Scholar
  15. 15.
    Vajda P, Felinger A, Guiochon G (2013) Evaluation of surface excess isotherms in liquid chromatography. J Chromatogr A 1291:41–47CrossRefPubMedGoogle Scholar
  16. 16.
    Bocian S, Skoczylas M, Goryńska I, Matyska M, Pesek J, Buszewski B (2016) Solvation process on phenyl-bonded stationary phases—the influence of polar functional groups. J Sep Sci 39:4369–4376CrossRefPubMedGoogle Scholar
  17. 17.
    Buszewski B, Bocian S, Nowaczyk A (2010) Modeling solvation on the chemically modified silica surfaces. J Sep Sci 33:2060–2068CrossRefPubMedGoogle Scholar
  18. 18.
    Samuelsson J, Arnell R, Diesen JS, Tibbelin J, Paptchikhine A, Fornstedt T, Sjöberg PJR (2008) Development of the tracer-pulse method for adsorption studies of analyte mixtures in liquid chromatography utilizing mass spectrometric detection. Anal Chem 80:2105–2112CrossRefPubMedGoogle Scholar
  19. 19.
    Glenne E, Öhlén K, Leek H, Klarqvist M, Samuelsson J, Forstedt T (2016) A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography. J Chromatogr A 1442:129–139CrossRefPubMedGoogle Scholar
  20. 20.
    Wang HL, Duda JL, Radke CJ (1978) Solution adsorption from liquid chromatography. J Colloid Interface Sci 66:153–165CrossRefGoogle Scholar
  21. 21.
    Köster F, Findenegg GH (1982) Adsorption from binary solvent mixtures onto silica gel by HPLC frontal analysis. Chromatographia 15:743–747CrossRefGoogle Scholar
  22. 22.
    Vajda P, Bocian S, Buszewski B, Felinger A (2010) Examination of the surface heterogeneity of reversed-phase packing materials with solvent adsorption. J Sep Sci 33:3644–3654CrossRefPubMedGoogle Scholar
  23. 23.
    Ohashi J, Harada M, Okada T (2016) A novel method for measuring excess adsorption isotherms of organic eluent components on reversed-phase packing material. J Sep Sci 40:842–848CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663CrossRefPubMedGoogle Scholar
  25. 25.
    Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305CrossRefPubMedGoogle Scholar
  26. 26.
    Takamuku T, Tabata M, Yamaguchi A, Nishimoto J, Kumamoto M, Wakita H, Ymaguchi T (1998) Liquid structure of acetonitrile-water mixtures by X-ray diffraction and infrared spectroscopy. J Phys Chem B 102:8880–8888CrossRefGoogle Scholar
  27. 27.
    Venables DS, Schmuttenmaer CA (2000) Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol. J Chem Phys 113:11222–11236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryTokyo Institute of TechnologyTokyoJapan
  2. 2.Analytical and Quality Evaluation Research LaboratoriesDaiichi Sankyo Co., Ltd.HiratsukaJapan

Personalised recommendations