Skip to main content
Log in

Determination of Molecular Structures of Acetone Solutes from Natural Rubber by Pyrolysis Gas Chromatography Coupled to Mass Spectrometry

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

As the non-isoprene components, acetone solutes (AS) from natural rubber (NR) are a crude mixture impacting the processing and mechanical properties of natural rubber significantly. Thus, illustrating the compositions and molecular structures of AS clearly is useful to grasp the inherent features of NR. Therefore, the compositions of AS from different NR (coded as WF, STR, SMR and MRSS) were investigated effectively via stepped pyrolysis gas chromatography coupled to mass spectrometry (PyGC–MS), as well as the assistance of thermogravimetric analysis (TGA). The results demonstrated that two degradation stages showed up in TGA curves for all AS samples. Principally the volatilization of higher aliphatic acids like linoleic acid and stearic acid determined by PyGC–MS induced the first degradation stage. Moreover, the decomposition of polyisoprene with low molecular weight chiefly caused the second degradation stage according to the results from PyGC–MS. Finally, the relative contents of fatty acids in AS can be arranged as AS-STR > AS-WF > AS-SMR > AS-MRSS based on the conclusions of GC–MS. The results are meaningful to the development of NR basic theory.

Graphical Abstract

Schematic of the preparation and analysis of AS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhong B, Jia Z, Luo Y, Guo B, Jia D (2015) Compos Part A Appl Sci Manuf 73:63–71

    Article  CAS  Google Scholar 

  2. Xu T, Jia Z, Wang S, Chen Y, Luo Y, Jia D, Peng Z (2016) J Appl Polym Sci 134:4460501–4460510

    Google Scholar 

  3. Xu T, Jia Z, Luo Y, Jia D, Zheng P (2015) Appl Surf Sci 328:306–313

    Article  CAS  Google Scholar 

  4. Rolere S, Liengprayoon S, Vaysse L, Sainte-Beuve J, Bonfils F (2015) Polym Testing 43:83–93

    Article  CAS  Google Scholar 

  5. Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Colloids Surf A 390:157–166

    Article  CAS  Google Scholar 

  6. Le HH, Pham T, Henning S, Klehm J, Wießner S, Stöckelhuber KW, Das A, Hoang XT, Do QK, Wu M (2015) Polymer 73:111–121

    Article  CAS  Google Scholar 

  7. Zhou Y, Kosugi K, Yamamoto Y, Kawahara S (2017) Polym Adv Technol 28:159–165

    Article  CAS  Google Scholar 

  8. Xu L, Huang C, Luo M, Qu W, Liu H, Gu Z, Jing L, Huang G, Zheng J (2015) RSC Adv 5:91742–91750

    Article  CAS  Google Scholar 

  9. Liu D, Zhao Y, Liao S, Liao X, Lin S, Guo Y (2014) Chin J Trop Crop 35:1429–1433

    Google Scholar 

  10. Lei J (2014) Ind Crop Product 55:25–32

    Article  CAS  Google Scholar 

  11. Lei J (2015) Ind Crop Product 65:102–109

    Article  CAS  Google Scholar 

  12. Qu W, Gao X, Huang G (2016) Polym Mater Sci Eng 32:43–48

    CAS  Google Scholar 

  13. Le HH, Abhijeet S, Ilisch S, Klehm J, Henning S, Beiner M, Sarkawi SS, Dierkes W, Das A, Fischer D (2014) Polymer 55:4738–4747

    Article  CAS  Google Scholar 

  14. Amnuaypornsri S, Sakdapipanich J, Toki S, Hsiao BS, Tanaka Y (2008) Rubber Chem Technol 81:753–766

    Article  CAS  Google Scholar 

  15. Xu T, Jia Z, Wu L, Chen Y, Luo Y, Jia D, Peng Z (2017) Appl Surf Sci 423:43–52

    Article  CAS  Google Scholar 

  16. Xu T, Jia Z, Wu L, Chen Y, Luo Y, Jia D, Peng Z (2017) RSC Adv 7:26458–26467

    Article  CAS  Google Scholar 

  17. Sansatsadeekul J, Sakdapipanich J, Rojruthai P (2011) J Biosci Bioeng 111:628–634

    Article  CAS  PubMed  Google Scholar 

  18. Chu H, Song Y, Li J, Luo F, Tan H, Huang G, Fu Q (2016) Colloid Polym Sci 294:433–439

    Article  CAS  Google Scholar 

  19. Simalgándara J, Damant A, Castle L (2002) Crit Rev Anal Chem 32(1):47–78

    Article  Google Scholar 

  20. Gonzálezbarreiro C, Canchogrande B, Araujonespereira P, Cidfernández J, Simalgándara J (2009) Chemosphere 75(1):34–47

    Article  CAS  Google Scholar 

  21. Rial-Otero R, Galesio M, Capelo JL, Simalgándara J (2009) Chromatographia 70(3–4):339–348

    Article  CAS  Google Scholar 

  22. Campanella B, Onor M, Pagliano E (2017) Anal Chim Acta 980:33–40

    Article  CAS  PubMed  Google Scholar 

  23. Torri C, Barreiro DL, Conti R, Fabbri D, Brilman W (2016) Energy Fuels 30:1135–1144

    CAS  Google Scholar 

  24. Yang C, Li R, Cui C, Wu J, Ding Y, Wu Y, Zhang B (2017) Energy Source Part A Recov Utilizat Environ Effect 39:177–183

    Article  CAS  Google Scholar 

  25. Jin X, Luo Y, Huo R, Karasz FE (1990) Chin J Mater Res 4:357–363

    Google Scholar 

  26. Tsuge S, Hajime O, Chuichi W, Jin X, Shi Y (2016) Pyrolysis-GC/MS data book of synthetic polymers. Chemical Industry Press, Beijing

    Google Scholar 

  27. Tsuge S, Hajime O, Jin X, Luo Y (1992) High resolution pyrolysis principle and polymer pyrolysis chromatographic spectrum atlas. China Science and Technology Press, Beijing

    Google Scholar 

  28. Luo Y, Jin X, Jia D, Huo R (1998) Thermal degradation studies of polymer on molecular level. In: The 10th symposium on analytical and applied pyrolysis Chinese Chemical Society, Taizhou

  29. Ma L (2011) Extraction and analysis of acetone extract from natural latex and its effects on properties of rubber. Material and Chemical Engineering College of Hainan University, Hainan

    Google Scholar 

  30. Yang Q (2005) Practical rubber technology, vol 1. Chemical Industry Press, Beijing

    Google Scholar 

  31. Prematunga D, Sandaruwan C, Ratnayake U (2012) International symposium on polymer science and technology, Changchun

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China [Grant Numbers 2015CB654700(2015CB674703)]; the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture, China (Grant Number 201403066); National Natural Science Foundation of China (Grant Number 51573051). We are particularly grateful to the China Scholarship Council for its support, and also appreciate the valuable comments from Prof. Jin Xigao, Miss Shi Yi (Institute of Chemistry, Chinese Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanfang Luo or Zhixin Jia.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Lin, J., Luo, Y. et al. Determination of Molecular Structures of Acetone Solutes from Natural Rubber by Pyrolysis Gas Chromatography Coupled to Mass Spectrometry. Chromatographia 81, 1085–1096 (2018). https://doi.org/10.1007/s10337-018-3543-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3543-z

Keywords

Navigation