Skip to main content
Log in

Chiral Separations Using a Modified Water Stationary Phase in Supercritical Fluid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel means of achieving chiral separations in supercritical fluid chromatography (SFC) using a water stationary phase is presented. By adding various chiral selectors to the phase, different chiral analytes can be readily separated using neat CO2 as a mobile phase. For example, by adding β-cyclodextrin, it is found that certain flavanone enantiomers can be separated, while using the antibiotic vancomycin as a selector provides separation of some chiral phenoxypropionic acids. Other additives such as sodium chloride and triethylamine are also explored and found to enhance certain separations when also present in the water phase. While column pressure has a moderate impact on chiral analyte retention and separation in this SFC method, column temperature has a comparatively larger influence. In particular, relatively cooler temperatures below about 5 °C are found to markedly increase resolution and selectivity. For instance, notably large resolution of 4.7 is achieved for a phenoxypropionic acid pair at 0 °C and 150 atm CO2. Since the method does not require modifier to elute such polar species, it is also readily compatible with FID detection and does not generate organic waste. Therefore, results indicate that this approach could be a potentially simple and flexible means of achieving chiral separations in SFC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarafder A (2016) Metamorphosis of supercritical fluid chromatography to SFC: an overview. Trends Analyt Chem 81:3–10

    Article  CAS  Google Scholar 

  2. Gere DR (1983) Supercritical fluid chromatography. Science 222:253–259

    Article  CAS  PubMed  Google Scholar 

  3. Fjeldsted JC, Lee ML (1984) Capillary supercritical fluid chromatography. Anal Chem 56:619–628

    Article  Google Scholar 

  4. Chester TL (1984) Capillary supercritical-fluid chromatography with flame-ionization detection: reduction of detection artifacts and extension of detectable molecular weight range. J Chromatogr 299:424–431

    Article  CAS  Google Scholar 

  5. Lee ML, Markides KE (1990) Analytical supercritical fluid chromatography and extraction. Chromatography Conferences Inc., Provo

    Google Scholar 

  6. Fogwill MO, Thurbide KB (2010) Chromatography using a water stationary phase and a carbon dioxide mobile phase. Anal Chem 82:10060–10067

    Article  CAS  PubMed  Google Scholar 

  7. Murakami JN, Thurbide KB (2015) Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography. J Sep Sci 38:1618–1624

    Article  CAS  PubMed  Google Scholar 

  8. Gallant JA, Thurbide KB (2014) Properties of water as a novel stationary phase in capillary gas chromatography. J Chromatogr A 1359:247–254

    Article  CAS  PubMed  Google Scholar 

  9. McKelvie KH, Thurbide KB (2017) Analysis of sulfur compounds using a water stationary phase in gas chromatography with flame photometric detection. Anal Methods 9:1097–1104

    Article  CAS  Google Scholar 

  10. Scott AF, Thurbide KB (2017) Retention characteristics of a pH tunable water stationary phase in supercritical fluid chromatography. J Chromatogr Sci 55:82–89

    Article  CAS  PubMed  Google Scholar 

  11. Ribeiro AR, Maia AS, Cass QB, Tiritan ME (2014) Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: an overview. J Chromatogr B 968:8–21

    Article  CAS  Google Scholar 

  12. Cagliero C, Sgorbini B, Cordero C, Liberto E, Rubiolo P, Bicchi C (2016) Enantioselective gas chromatography with derivatized cyclodextrins in the flavour and fragrance field. Isr J Chem 56:925–939

    Article  CAS  Google Scholar 

  13. Wong CS (2006) Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Anal Bioanal Chem 386:544–558

    Article  CAS  PubMed  Google Scholar 

  14. Chankvetadze B (2013) Liquid Chromatographic Separation of Enantiomers. In: Fanali S, Haddad P, Poole C, Schoenmakers P, Lloyd D (eds) Liquid chromatography: applications. Elsevier, Amsterdam

    Google Scholar 

  15. Scriba GKE (2016) Chiral recognition in separation science—an update. J Chromatogr A 1467:56–78

    Article  CAS  PubMed  Google Scholar 

  16. Xiao Y, Ng S-C, Tan TTY, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong DW, Ward TJ, Armstrong RD, Beesley TE (1986) Separation of drug stereoisomers by the formation of beta-cyclodextrin inclusion complexes. Science 232:1132–1135

    Article  CAS  PubMed  Google Scholar 

  18. West C (2014) Enantioselective separations with supercritical fluids-review. Curr Anal Chem 10:99–120

    Article  CAS  Google Scholar 

  19. Brugger R, Arm H (1992) Investigations of the influence of silanol groups on the separation of enantiomers by liquid and supercritical fluid chromatography. J Chromatogr 592:309–316

    Article  Google Scholar 

  20. Xie S-M, Yuan L-M (2017) Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography. J Sep Sci 40:124–137

    Article  CAS  PubMed  Google Scholar 

  21. Debowski J, Sybilska D, Jurczak J (1982) β-Cyclodextrin as a chiral component of the mobile phase for separation of mandelic acid into enantiomers in reversed-phase systems of high-performance liquid chromatography. J Chromatogr 237:303–306

    Article  CAS  Google Scholar 

  22. Maas B, Dietrich A, Karl V, Kaunzinger A, Lehmann D, Kopke T, Mosandl A (1993) tert-Butyldimethylsilyl-substituted cyclodextrin derivatives as versatile chiral stationary phases in capillary GC. J Microcolumn Sep 5:421–427

    Article  CAS  Google Scholar 

  23. Koscielski T, Sybilska D (1985) Resolution of cis- and trans-dimethylcyclohexanes by partition gas chromatography through cyclodextrin complexes. J Chromatogr 349:3–8

    Article  Google Scholar 

  24. Takahashi S, Okada T (2014) Versatile chiral chromatography with mixed stationary phases of water-impregnated silica gel and reversed-phase packing. Analyst 139:1830–1833

    Article  CAS  PubMed  Google Scholar 

  25. Shamoto T, Tasaki Y, Okada T (2010) Chiral ice chromatography. J Am Chem Soc 132:13135–13137

    Article  CAS  PubMed  Google Scholar 

  26. Krause M, Galensa R (1990) Optical resolution of flavanones by high-performance liquid chromatography on various chiral stationary phases. J Chromatogr 514:147–159

    Article  CAS  Google Scholar 

  27. Silva M, Pérez-Quintanilla D, Morante-Zarcero S, Sierra I, Marina ML, Aturki Z, Fanali S (2017) Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography. J Chromatogr A 1490:166–176

    Article  CAS  PubMed  Google Scholar 

  28. Fenyvesi E, Puskas I (2017) Effect of inorganic salts on the inclusion complex formation and solubilizing potency of cyclodextrins. Cyclodext News 31:1–11

    Google Scholar 

  29. Si-Ahmed K, Tazerouti F, Badjah-Hadj-Ahmed AY, Aturki Z, D’Orazio G, Rocco A, Fanali S (2010) Optical isomer separation of flavanones and flavanone glycosides by nano-liquid chromatography using a phenyl-carbamate-propyl-β-cyclodextrin chiral stationary phase. J Chromatogr A 1217:1175–1182

    Article  CAS  PubMed  Google Scholar 

  30. Lamparczyk H, Zarzycki PK, Nowakowska J (1994) Effect of temperature on separation of norgestrel enantiomers by high-performance liquid chromatography. J Chromatogr A 668:413–417

    Article  CAS  PubMed  Google Scholar 

  31. Pullen RH, Brennan JJ, Patonay G (1995) Chiral separation retention mechanisms in high-performance liquid chromatography using bare silica stationary phase and β-cyclodextrin as a mobile phase additive. J Chromatogr A 691:187–193

    Article  CAS  Google Scholar 

  32. Schleimer M, Fluck M, Schurig V (1994) Enantiomer separation by capillary SFC and GC on chirasil-nickel: observation of unusual peak broadening phenomena. Anal Chem 66:2893–2897

    Article  CAS  Google Scholar 

  33. Dönnecke J, Svensson LA, Gyllenhaal O, Karlsson K-E, Karlsson A, Vessman J (1999) Evaluation of a vancomycin chiral stationary phase in packed capillary supercritical fluid chromatography. J Microcolumn Sep 11:521–533

    Article  Google Scholar 

  34. Wolf C, Pirkle WH (1997) Enantioseparations by subcritical fluid chromatography at cryogenic temperatures. J Chromatogr A 785:173–178

    Article  CAS  Google Scholar 

  35. Jung M, Schurig V (1993) Extending the scope of enantiomer separation by capillary supercritical fluid chromatography on immobilized polysiloxane-anchored permethyl-β-cyclodextrin (Chirasil-Dex). J High Resolut Chromatogr 16:215–223

    Article  CAS  Google Scholar 

  36. Berthod A, Li W, Armstrong DW (1992) Multiple enantioselective retention mechanisms on derivatized cyclodextrin gas chromatographic chiral stationary phases. Anal Chem 64:873–879

    Article  CAS  Google Scholar 

  37. Tasaki Y, Okada T (2006) Ice chromatography. Characterization of water-ice as a chromatographic stationary phase. Anal Chem 78:4155–4160

    Article  CAS  PubMed  Google Scholar 

  38. Miura M, Terashita Y, Funazo K, Tanaka M (1999) Separation of phenoxy acid herbicides and their enantiomers in the presence of selectively methylated cyclodextrin derivatives by capillary zone electrophoresis. J Chromatogr A 846:359–367

    Article  CAS  Google Scholar 

  39. Schneiderheinze JM, Armstrong DW, Berthod A (1999) Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides. Chirality 11:330–337

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Young DJ, Tan TTY, Ng SC (2010) “Click” preparation of hindered cyclodextrin chiral stationary phases and their efficient resolution in high performance liquid chromatography. J Chromatogr A 1217:7878–7883

    Article  CAS  PubMed  Google Scholar 

  41. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917

    Article  CAS  PubMed  Google Scholar 

  42. Nair UB, Chang SSC, Armstrong DW, Rawjee YY, Eggleston DS, McArdle JV (1996) Elucidation of vancomycin’s enantioselective binding site using its copper complex. Chirality 8:590–595

    Article  CAS  Google Scholar 

  43. Nair UB, Armstrong DW (1997) Evaluation of two amine-functionalized cyclodextrins as chiral selectors in capillary electrophoresis: comparisons to vancomycin. Microchem J 57:199–217

    Article  CAS  Google Scholar 

  44. Armstrong DW, Rundlett KL, Chen JR (1994) Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality 6:496–509

    Article  CAS  PubMed  Google Scholar 

  45. Rosales-Conrado N, León-González ME, D’Orazio G, Fanali S (2004) Enantiomeric separation of chlorophenoxy acid herbicides by nano liquid chromatography-UV detection on a vancomycin-based chiral stationary phase. J Sep Sci 27:1303–1308

    Article  CAS  PubMed  Google Scholar 

  46. Zarzycki PK, Ohta H, Saito Y, Jinno K (2008) Interaction of native α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin and their hydroxypropyl derivatives with selected organic low molecular mass compounds at elevated and subambient temperature under RP-HPLC conditions. Anal Bioanal Chem 391:2793–2801

    Article  CAS  PubMed  Google Scholar 

  47. Levkin PA, Levkina A, Schurig V (2006) Combining the enantioselectivities of l-valine diamide and permethylated β-cyclodextrin in one gas chromatographic chiral stationary phase. Anal Chem 78:5143–5148

    Article  CAS  PubMed  Google Scholar 

  48. Sforcin JM, Bankova V (2011) Propolis: is there a potential for the development of new drugs? J Ethnopharmacol 133:253–260

    Article  CAS  PubMed  Google Scholar 

  49. Yanez JA, Andrews PK, Davies NM (2007) Methods of analysis and separation of chiral flavonoids. J Chromatogr B 848:159–181

    Article  CAS  Google Scholar 

  50. Rosales-Conrado N, Guillén-Casla V, Pérez-Arribas LV, Leon-Gonzalez ME, Polo-Diez LM (2013) Simultaneous enantiomeric determination of acidic herbicides in apple juice samples by liquid chromatography on a teicoplanin chiral stationary phase. Food Anal Methods 6:535–547

    Article  Google Scholar 

  51. Goodger JQD, Seneratne SL, Nicolle D, Woodrow IE (2016) Foliar essential oil glands of Eucalyptus subgenus Eucalyptus (Myrtaceae) are a rich source of flavonoids and related non-volatile constituents. PLoS One 11:1–18

    Google Scholar 

  52. Murakami JN, Thurbide KB (2015) Packed column supercritical fluid chromatography using stainless steel particles and water as a stationary phase. Anal Chem 87:9429–9435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for a Discovery Grant in support of this research.

Funding

This study was funded by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Thurbide.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies involving human or animal participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frantz, J.J., Thurbide, K.B. Chiral Separations Using a Modified Water Stationary Phase in Supercritical Fluid Chromatography. Chromatographia 81, 969–979 (2018). https://doi.org/10.1007/s10337-018-3534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3534-0

Keywords

Navigation