Skip to main content
Log in

Precursor Ion-Scan Mode-Based Screening Strategy for New Amorfrutin Derivatives from Amorpha fruticosa by UPLC–QqQ–MS and UPLC–Q-TOF–MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This study presents a screening strategy for unknown compounds by coupling UPLC–QqQ–MS and UPLC–Q-TOF–MS analyses. Amorfrutins, potential PPARγ agonists in Amorpha fruticosa, were selected as the research target. First, MS/MS analysis of three amorfrutin references (AA, AB, and AC) by Q-TOF revealed the mass-spectrometric fragmentation patterns of amorfrutins, and m/z 225 was recognized as a characteristic and common fragment ion of amorfrutins. Then, unknown amorfrutins were screened in the fruits of A. fruticosa by UPLC–QqQ–MS operating in precursor ion-scan mode, and the product ion was set as m/z 225 for screening potential amorfrutins. According to the high-resolution MS–MS spectral data provided by UPLC–Q-TOF–MS, the molecular formula of potential amorfrutins and their respective characteristic fragments were calculated. Finally, three unknown amorfrutins, namely, amorfrutin D and two new amorfrutins, were identified. As far as we know, this is the first study to rapidly identify unknown compounds by combined application of QqQ–MS precursor ion scan and Q-TOF–MS formula calculation. This research strategy will also be effective for the discovery of other trace natural products and metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qing L-S, Shan X-Q, Xu X-M, Xue Y, Deng W-L, Li B-G, Wang X-L, Liao X (2010) Rapid Commun Mass Spectrom 24:3335–3339

    Article  CAS  Google Scholar 

  2. Qing L-S, Xue Y, Zhang J-G, Zhang Z-F, Liang J, Jiang Y, Liu Y-M, Liao X (2012) J Chromatogr A 1249:130–137

    Article  CAS  Google Scholar 

  3. Castro ON, Benites J, Rodilla J, Santiago JC, Simirgiotis M, Sepulveda B, Areche C (2017) Chromatographia 80:967–973

    Article  CAS  Google Scholar 

  4. Matraszek-Zuchowska I, Wozniak B, Posyniak A (2016) Chromatographia 79:1003–1012

    Article  CAS  Google Scholar 

  5. Perry SJ, Nász S, Saeed M (2015) Rapid Commun Mass Spectrom 29:1545–1555

    Article  CAS  Google Scholar 

  6. González-Jartín JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM (2018) Talanta 178:37–42

    Article  Google Scholar 

  7. Althakafy JT, Kulsing C, Grace MR, Marriott PJ (2017) J Chromatogr A 1515:164–171

    Article  CAS  Google Scholar 

  8. de Groot JC, Weidner C, Krausze J, Kawamoto K, Schroeder FC, Sauer S, Buessow K (2013) J Med Chem 56:1535–1543

    Article  Google Scholar 

  9. Weidner C, Wowro SJ, Freiwald A, Kawamoto K, Witzke A, Kliem M, Siems K, Mueller-Kuhrt L, Schroeder FC, Sauer S (2013) Diabetologia 56:1802–1812

    Article  CAS  Google Scholar 

  10. Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han C-T, Giegold S, Baumann M, Klebl B, Siems K, Mueller-Kuhrt L, Schuermann A, Schueler R, Pfeiffer AFH, Schroeder FC, Buessow K, Sauer S (2012) Proc Natl Acad Sci USA 109:7257–7262

    Article  CAS  Google Scholar 

  11. Hanus LO, Meyer SM, Munoz E, Taglialatela-Scafati O, Appendino G (2016) Nat Prod Rep 33:1357–1392

    Article  CAS  Google Scholar 

  12. Muharini R, Diaz A, Ebrahim W, Mandi A, Kurtan T, Rehberg N, Kalscheuer R, Hartmann R, Orfali RS, Lin W, Liu Z, Proksch P (2017) J Nat Prod 80:169–180

    Article  CAS  Google Scholar 

  13. Dat NT, Lee JH, Lee K, Hong YS, Kim YH, Lee JJ (2008) J Nat Prod 71:1696–1700

    Article  Google Scholar 

  14. Mitscher LA, Park YH, Alshamma A, Hudson PB, Haas T (1981) Phytochemistry 20:781–785

    Article  CAS  Google Scholar 

  15. Xie J, Li J, Liang J, Luo P, Qing L-S, Ding L-S (2017) Food Anal Method 10:363–368

    Article  Google Scholar 

  16. Qing L-S, Tang N, Xue Y, Liang J, Liu Y-M, Liao X (2012) Anal Method 4:1612–1615

    Article  CAS  Google Scholar 

  17. Qing L-S, Xue Y, Deng W-L, Liao X, Xu X-M, Li B-G, Liu Y-M (2011) Anal Bioanal Chem 399:1223–1231

    Article  CAS  Google Scholar 

  18. Qing L-S, Xue Y, Liu Y-M, Liang J, Xie J, Liao X (2013) J Agric Food Chem 61:8072–8078

    Article  Google Scholar 

  19. Swain D, Patel PN, Nagaraj G, Srinivas KS, Sharma M, Garg P, Samanthula G (2016) Chromatographia 79:169–178

    Article  CAS  Google Scholar 

  20. Lang K, Corrêa J, Wolff F, da Silva GF, Malheiros A, Filho VC, Silva RML, Quintão NLM, Sandjo LP, Bonomini TJ, Bresolin TMB (2017) Talanta 167:302–309

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 81503361) and the Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College (YLZBZ1820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xie.

Ethics declarations

Conflict of interest

Lei-Lei Du declares that she has no conflict of interest. Ying Xue declares that she has no conflict of interest. Jing Xie declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, LL., Xue, Y. & Xie, J. Precursor Ion-Scan Mode-Based Screening Strategy for New Amorfrutin Derivatives from Amorpha fruticosa by UPLC–QqQ–MS and UPLC–Q-TOF–MS. Chromatographia 81, 769–776 (2018). https://doi.org/10.1007/s10337-018-3501-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3501-9

Keywords

Navigation