Skip to main content

Two-Dimensional Liquid Chromatography (2D-LC) in Pharmaceutical Analysis: Applications Beyond Increasing Peak Capacity

Abstract

One-dimensional liquid chromatography (1D-LC) is not always capable of efficiently separating complex samples. This drawback is not solely due to the lack of column efficiency, but is mainly due to insufficient selectivity and the need to separate the analytes of interest with orthogonal retention mechanisms. In this regard, two-dimensional liquid chromatography (2D-LC) is currently attracting much interest for its markedly higher resolving power compared to one-dimensional separation. In this work, three applications of 2D-LC from the pharmaceutical industry are presented with the goal not only to increase peak capacity, but also to support investigations. In the first application, the retention times of peaks of interest are matched under different mobile phase conditions for the purpose of transferring the method from a mass spectrometry (MS) incompatible buffer to an MS compatible buffer. The second application includes developing a method for simultaneous detection and quantitation of degradants and aggregates in a biologics and small molecule combination product. The third application supports method development by confirming the purity of separated peaks using orthogonal separation conditions in the first and second dimensions and to investigate mass balance issues where some peaks are expected to elute in the solvent front.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Haidar Ahmad IA, Soliven A, Allen RC, Filgueira M, Carr PW (2015) J Chromatogr A 1386:31–38

    CAS  Article  Google Scholar 

  2. Allen RC, Barnes BB, Haidar Ahmad IA, Filgueira MR, Carr PW (2014) J Chromatogr A 1361:169–177

    CAS  Article  Google Scholar 

  3. Stoll DR, Cohen JD, Carr PW (2006) J Chromatogr A 1122:123–137

    CAS  Article  Google Scholar 

  4. Li X, Stoll DR, Carr PW (2008) Anal Chem 81:845–850

    Article  Google Scholar 

  5. Potts LW, Stoll DR, Li X, Carr PW (2010) J Chromatogr A 1217:5700–5709

    CAS  Article  Google Scholar 

  6. Pirok BWJ, Gargano AFG, Schoenmakers PJ (2017) J Sep Sci. https://doi.org/10.1002/jssc.201700863

    Google Scholar 

  7. Scoparo CT, de Souza LM, Dartora N, Sassaki GL, Gorin PAJ, Iacomini M (2012) J Chromatogr A 1222:29–37

    CAS  Article  Google Scholar 

  8. Li Y, Gu C, Gruenhagen J, Zhang K, Yehl P, Chetwyn NP, Medley CD (2015) J Chromatogr A 1393:81–88

    CAS  Article  Google Scholar 

  9. Dugo P, Fawzy N, Cichello F, Cacciola F, Donato P, Mondello L (2013) J Chromatogr A 1278:46–53

    CAS  Article  Google Scholar 

  10. Wang S, Li J, Shi X, Qiao L, Lu X, Xu G (2013) J Chromatogr A 1321:65–72

    CAS  Article  Google Scholar 

  11. Montero L, Herrero M, Ibáñez E, Cifuentes A (2013) J Chromatogr A 1313:275–283

    CAS  Article  Google Scholar 

  12. Kittlaus S, Schimanke J, Kempe G, Speer K (2013) J Chromatogr A 1283:98–109

    CAS  Article  Google Scholar 

  13. Vanhoenacker G, Vandenheede I, David F, Sandra P, Sandra K (2015) Anal Bioanal Chem 407:355–366

    CAS  Article  Google Scholar 

  14. Matejicek D (2012) J Chromatogr A 1231:52–58

    CAS  Article  Google Scholar 

  15. Petersson P, Haselmann K, Buckenmaier S (2016) J Chromatogr A 1468:95–101

    CAS  Article  Google Scholar 

  16. Zhang K, Li Y, Tsang M, Chetwyn NP (2013) J Sep Sci 36:2986–2992

    CAS  Google Scholar 

  17. Maloney DRSTD (2017) Recent advances in two-dimensional liquid chromatography for pharmaceutical and biopharmaceutical analysis. LCGC North America 35(9):680–687

  18. Striegel A, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. Wiley, Hoboken

    Book  Google Scholar 

  19. Boone MA, Striegel AM (2006) Macromolecules 39:4128–4131

    CAS  Article  Google Scholar 

  20. Caltabiano AM, Foley JP, Striegel AM (2018) J Chromatogr A 1532:161–174

    CAS  Article  Google Scholar 

  21. Lee C, Zang J, Cuff J, McGachy N, Natishan TK, Welch CJ, Helmy R, Bernardoni F (2013) Chromatographia 76:5–11

    CAS  Article  Google Scholar 

  22. Hajslova J, Zrostlikova J (2003) J Chromatogr A 1000:181–197

    CAS  Article  Google Scholar 

  23. Lincoln D, Fell AF, Anderson NH, England D (1992) J Pharm Biomed Anal 10:837–844

    CAS  Article  Google Scholar 

  24. Keller HR, Massart DL (1991) Anal Chim Acta 246:379–390

    CAS  Article  Google Scholar 

  25. Wiberg K, Andersson M, Hagman A, Jacobsson SP (2004) J Chromatogr A 1029:13–20

    CAS  Article  Google Scholar 

  26. Ahmad IAH, Hrovat F, Soliven A, Clarke A, Boswell P, Tarara T, Blasko A (2017) Chromatographia 80:1143–1159

    CAS  Article  Google Scholar 

  27. Haidar Ahmad IA (2017) Chromatographia 80:705–730

    CAS  Article  Google Scholar 

  28. Dolan J (2011) Selectivity in reversed-phase LC separations, part III: column-type selectivity. In: LCGC North America, pp 236–244

  29. Snyder LR, Dolan JW, Carr PW (2004) J Chromatogr A 1060:77–116

    CAS  Article  Google Scholar 

  30. Venkatramani CJ, Girotti J, Wigman L, Chetwyn N (2014) J Sep Sci 37:3214–3225

    CAS  Article  Google Scholar 

  31. Zhang K, Wang J, Tsang M, Wigman L, Chetwyn NP (2013) Am Pharm Rev 16:39–44

    CAS  Google Scholar 

  32. Wilson NS, Nelson MD, Dolan JW, Snyder LR, Wolcott RG, Carr PW (2002) J Chromatogr A 961:171–193

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Agilent for the provision of loan instrument. We would like also to acknowledge Bob Giuffre, Kritsin Swanson, and Lisa Zhang from Agilent Technologies for their helpful suggestions and discussions. We would like to thank members of the Analytical Network at Novartis Pharmaceuticals for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad A. Haidar Ahmad.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to declare.

Human and animal rights statement

The research presented here did not involve human participants and/or animals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I.A.H., Blasko, A., Clarke, A. et al. Two-Dimensional Liquid Chromatography (2D-LC) in Pharmaceutical Analysis: Applications Beyond Increasing Peak Capacity. Chromatographia 81, 401–418 (2018). https://doi.org/10.1007/s10337-018-3474-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3474-8

Keywords

  • Two-dimensional liquid chromatography
  • 2D-LC
  • Selective 2D-LC
  • Peak capacity
  • Pharmaceuticals
  • Peak purity
  • Hydrophobic subtraction model
  • Mass-balance issues
  • Large biomolecule drug
  • Small molecule drug