, Volume 81, Issue 3, pp 401–418 | Cite as

Two-Dimensional Liquid Chromatography (2D-LC) in Pharmaceutical Analysis: Applications Beyond Increasing Peak Capacity

  • Imad A. Haidar Ahmad
  • Andrei Blasko
  • Adrian Clarke
  • Shereen Fakih


One-dimensional liquid chromatography (1D-LC) is not always capable of efficiently separating complex samples. This drawback is not solely due to the lack of column efficiency, but is mainly due to insufficient selectivity and the need to separate the analytes of interest with orthogonal retention mechanisms. In this regard, two-dimensional liquid chromatography (2D-LC) is currently attracting much interest for its markedly higher resolving power compared to one-dimensional separation. In this work, three applications of 2D-LC from the pharmaceutical industry are presented with the goal not only to increase peak capacity, but also to support investigations. In the first application, the retention times of peaks of interest are matched under different mobile phase conditions for the purpose of transferring the method from a mass spectrometry (MS) incompatible buffer to an MS compatible buffer. The second application includes developing a method for simultaneous detection and quantitation of degradants and aggregates in a biologics and small molecule combination product. The third application supports method development by confirming the purity of separated peaks using orthogonal separation conditions in the first and second dimensions and to investigate mass balance issues where some peaks are expected to elute in the solvent front.


Two-dimensional liquid chromatography 2D-LC Selective 2D-LC Peak capacity Pharmaceuticals Peak purity Hydrophobic subtraction model Mass-balance issues Large biomolecule drug Small molecule drug 



The authors would like to thank the Agilent for the provision of loan instrument. We would like also to acknowledge Bob Giuffre, Kritsin Swanson, and Lisa Zhang from Agilent Technologies for their helpful suggestions and discussions. We would like to thank members of the Analytical Network at Novartis Pharmaceuticals for their helpful discussions.

Compliance with Ethical Standards

Conflict of interest

The authors have no potential conflicts of interest to declare.

Human and animal rights statement

The research presented here did not involve human participants and/or animals.


  1. 1.
    Haidar Ahmad IA, Soliven A, Allen RC, Filgueira M, Carr PW (2015) J Chromatogr A 1386:31–38CrossRefGoogle Scholar
  2. 2.
    Allen RC, Barnes BB, Haidar Ahmad IA, Filgueira MR, Carr PW (2014) J Chromatogr A 1361:169–177CrossRefGoogle Scholar
  3. 3.
    Stoll DR, Cohen JD, Carr PW (2006) J Chromatogr A 1122:123–137CrossRefGoogle Scholar
  4. 4.
    Li X, Stoll DR, Carr PW (2008) Anal Chem 81:845–850CrossRefGoogle Scholar
  5. 5.
    Potts LW, Stoll DR, Li X, Carr PW (2010) J Chromatogr A 1217:5700–5709CrossRefGoogle Scholar
  6. 6.
    Pirok BWJ, Gargano AFG, Schoenmakers PJ (2017) J Sep Sci. Google Scholar
  7. 7.
    Scoparo CT, de Souza LM, Dartora N, Sassaki GL, Gorin PAJ, Iacomini M (2012) J Chromatogr A 1222:29–37CrossRefGoogle Scholar
  8. 8.
    Li Y, Gu C, Gruenhagen J, Zhang K, Yehl P, Chetwyn NP, Medley CD (2015) J Chromatogr A 1393:81–88CrossRefGoogle Scholar
  9. 9.
    Dugo P, Fawzy N, Cichello F, Cacciola F, Donato P, Mondello L (2013) J Chromatogr A 1278:46–53CrossRefGoogle Scholar
  10. 10.
    Wang S, Li J, Shi X, Qiao L, Lu X, Xu G (2013) J Chromatogr A 1321:65–72CrossRefGoogle Scholar
  11. 11.
    Montero L, Herrero M, Ibáñez E, Cifuentes A (2013) J Chromatogr A 1313:275–283CrossRefGoogle Scholar
  12. 12.
    Kittlaus S, Schimanke J, Kempe G, Speer K (2013) J Chromatogr A 1283:98–109CrossRefGoogle Scholar
  13. 13.
    Vanhoenacker G, Vandenheede I, David F, Sandra P, Sandra K (2015) Anal Bioanal Chem 407:355–366CrossRefGoogle Scholar
  14. 14.
    Matejicek D (2012) J Chromatogr A 1231:52–58CrossRefGoogle Scholar
  15. 15.
    Petersson P, Haselmann K, Buckenmaier S (2016) J Chromatogr A 1468:95–101CrossRefGoogle Scholar
  16. 16.
    Zhang K, Li Y, Tsang M, Chetwyn NP (2013) J Sep Sci 36:2986–2992Google Scholar
  17. 17.
    Maloney DRSTD (2017) Recent advances in two-dimensional liquid chromatography for pharmaceutical and biopharmaceutical analysis. LCGC North America 35(9):680–687Google Scholar
  18. 18.
    Striegel A, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. Wiley, HobokenCrossRefGoogle Scholar
  19. 19.
    Boone MA, Striegel AM (2006) Macromolecules 39:4128–4131CrossRefGoogle Scholar
  20. 20.
    Caltabiano AM, Foley JP, Striegel AM (2018) J Chromatogr A 1532:161–174CrossRefGoogle Scholar
  21. 21.
    Lee C, Zang J, Cuff J, McGachy N, Natishan TK, Welch CJ, Helmy R, Bernardoni F (2013) Chromatographia 76:5–11CrossRefGoogle Scholar
  22. 22.
    Hajslova J, Zrostlikova J (2003) J Chromatogr A 1000:181–197CrossRefGoogle Scholar
  23. 23.
    Lincoln D, Fell AF, Anderson NH, England D (1992) J Pharm Biomed Anal 10:837–844CrossRefGoogle Scholar
  24. 24.
    Keller HR, Massart DL (1991) Anal Chim Acta 246:379–390CrossRefGoogle Scholar
  25. 25.
    Wiberg K, Andersson M, Hagman A, Jacobsson SP (2004) J Chromatogr A 1029:13–20CrossRefGoogle Scholar
  26. 26.
    Ahmad IAH, Hrovat F, Soliven A, Clarke A, Boswell P, Tarara T, Blasko A (2017) Chromatographia 80:1143–1159CrossRefGoogle Scholar
  27. 27.
    Haidar Ahmad IA (2017) Chromatographia 80:705–730CrossRefGoogle Scholar
  28. 28.
    Dolan J (2011) Selectivity in reversed-phase LC separations, part III: column-type selectivity. In: LCGC North America, pp 236–244Google Scholar
  29. 29.
    Snyder LR, Dolan JW, Carr PW (2004) J Chromatogr A 1060:77–116CrossRefGoogle Scholar
  30. 30.
    Venkatramani CJ, Girotti J, Wigman L, Chetwyn N (2014) J Sep Sci 37:3214–3225CrossRefGoogle Scholar
  31. 31.
    Zhang K, Wang J, Tsang M, Wigman L, Chetwyn NP (2013) Am Pharm Rev 16:39–44Google Scholar
  32. 32.
    Wilson NS, Nelson MD, Dolan JW, Snyder LR, Wolcott RG, Carr PW (2002) J Chromatogr A 961:171–193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Imad A. Haidar Ahmad
    • 1
  • Andrei Blasko
    • 2
  • Adrian Clarke
    • 3
  • Shereen Fakih
    • 4
  1. 1.Process Research and DevelopmentMerck & Co., Inc.RahwayUSA
  2. 2.Novartis Pharmaceuticals CorporationSan CarlosUSA
  3. 3.Novartis Pharma AG, Chemical and Analytical Development, CHADBaselSwitzerland
  4. 4.The Lebanese UniversityBeirutLebanon

Personalised recommendations