Skip to main content

Advertisement

Log in

Examination of Selectivities of Thermally Stable Geminal Dicationic Ionic Liquids by Structural Modification

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Dicationic ionic liquids (ILs) are widely used as gas chromatography (GC) stationary phases as they show higher thermal stabilities, variety of polarities, and unique selectivities towards certain compounds. An important aspect contributing to them is that they show multiple solvation interactions compared to the traditional GC stationary phases. Dicationic ILs are considered as combination of three structural moieties: (1) cationic head groups; (2) a linkage chain; and (3) the counter anions. Modifications in these structural moieties can alter the chromatographic properties of IL stationary phases. In this study, a series of nine thermally stable IL stationary phases were synthesized by the combination of five different cations, two different linkage chains, and two different anions. Different test mixtures composed of a variety of compounds having different functional groups and polarities were analyzed on these columns. A comparison of the separation patterns of these different compounds on nine different IL columns provided some insights about the effects of structural modifications on the selectivities and polarities of dicationic ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  Google Scholar 

  2. Anderson JL, Armstrong DW, Wei G-T (2006) Ionic liquids in analytical chemistry. Anal Chem 78(9):2892–2902

    Article  Google Scholar 

  3. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661(1):1–16

    Article  CAS  Google Scholar 

  4. Breitbach ZS, Armstrong DW (2008) Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Anal Bioanal Chem 390(6):1605–1617

    Article  CAS  Google Scholar 

  5. Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, Sidisky LM, Armstrong DW (2008) Trigonal tricationic ionic liquids: a generation of gas chromatographic stationary phases. Anal Chem 81(1):160–173

    Article  Google Scholar 

  6. Han X, Armstrong DW (2005) Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Org Lett 7(19):4205–4208

    Article  CAS  Google Scholar 

  7. Xiao J-C, JnM Shreeve (2005) Synthesis of 2,2′-biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J Org Chem 70(8):3072–3078

    Article  CAS  Google Scholar 

  8. Wang R, Jin C-M, Twamley B, JnM Shreeve (2006) Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities. Inorg Chem 45(16):6396–6403

    Article  CAS  Google Scholar 

  9. Bhawal SS, Patil RA, Armstrong DW (2015) Rapid, effective deprotection of tert-butoxycarbonyl (Boc) amino acids and peptides at high temperatures using a thermally stable ionic liquid. RSC Adv 5(116):95854–95856

    Article  CAS  Google Scholar 

  10. Ding J, Desikan V, Han X, Xiao TL, Ding R, Jenks WS, Armstrong DW (2005) Use of chiral ionic liquids as solvents for the enantioselective photoisomerization of dibenzobicyclo [2.2. 2] octatrienes. Org Lett 7(2):335–337

    Article  CAS  Google Scholar 

  11. Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent–catalysts. J Am Chem Soc 124(21):5962–5963

    Article  CAS  Google Scholar 

  12. Dyson PJ, Ellis DJ, Welton T, Parker DG (1999) Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem Commun 1:25–26

    Article  Google Scholar 

  13. Huang K, Han X, Zhang X, Armstrong DW (2007) PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal Bioanal Chem 389(7–8):2265–2275

    Article  CAS  Google Scholar 

  14. Anderson JL, Armstrong DW (2003) High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem 75(18):4851–4858

    Article  CAS  Google Scholar 

  15. Armstrong DW, He L, Liu Y-S (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71(17):3873–3876

    Article  CAS  Google Scholar 

  16. Berthod A, He L, Armstrong DW (2001) Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography. Chromatographia 53(1):63–68

    Article  CAS  Google Scholar 

  17. Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124(47):14247–14254

    Article  CAS  Google Scholar 

  18. Anderson JL, Armstrong DW (2005) Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal Chem 77(19):6453–6462

    Article  CAS  Google Scholar 

  19. Jin C-M, Ye C, Phillips BS, Zabinski JS, Liu X, Liu W, Jean’ne MS (2006) Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. J Mater Chem 16(16):1529–1535

    Article  CAS  Google Scholar 

  20. Carda-Broch S, Berthod A, Armstrong D (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375(2):191–199

    Article  CAS  Google Scholar 

  21. Dai S, Ju Y, Barnes C (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J Chem Soc Dalton Trans 8:1201–1202

    Article  Google Scholar 

  22. Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73(15):3737–3741

    Article  CAS  Google Scholar 

  23. Liu R, J-f Liu, Yin Y-g Hu, X-l Jiang G-b (2009) Ionic liquids in sample preparation. Anal Bioanal Chem 393(3):871–883

    Article  CAS  Google Scholar 

  24. Armstrong DW, Zhang L-K, He L, Gross ML (2001) Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 73(15):3679–3686

    Article  CAS  Google Scholar 

  25. Carda-Broch S, Berthod A, Armstrong DW (2003) Ionic matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers. Rapid Commun Mass Spectrom 17(6):553–560

    Article  CAS  Google Scholar 

  26. Tholey A, Heinzle E (2006) Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry—applications and perspectives. Anal Bioanal Chem 386(1):24–37

    Article  CAS  Google Scholar 

  27. Chan K, Lanthier P, Liu X, Sandhu JK, Stanimirovic D, Li J (2009) MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal Chim Acta 639(1):57–61

    Article  CAS  Google Scholar 

  28. Crank JA, Armstrong DW (2009) Towards a second generation of ionic liquid matrices (ILMs) for MALDI-MS of peptides, proteins, and carbohydrates. J Am Soc Mass Spectrom 20(10):1790–1800

    Article  CAS  Google Scholar 

  29. Lagrost C, Carrie D, Vaultier M, Hapiot P (2003) Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents? J Phys Chem A 107(5):745–752

    Article  CAS  Google Scholar 

  30. Enders Dickinson V, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) Hybrid redox polyether melts based on polyether-tailed counterions. J Am Chem Soc 121(4):613–616

    Article  Google Scholar 

  31. Doyle KP, Lang CM, Kim K, Kohl PA (2006) Dentrite-free electrochemical deposition of Li–Na alloys from an ionic liquid electrolyte. J Electrochem Soc 153(7):A1353–A1357

    Article  CAS  Google Scholar 

  32. Nanayakkara YS, Moon H, Payagala T, Wijeratne AB, Crank JA, Sharma PS, Armstrong DW (2008) A fundamental study on electrowetting by traditional and multifunctional ionic liquids: possible use in electrowetting on dielectric-based microfluidic applications. Anal Chem 80(20):7690–7698

    Article  CAS  Google Scholar 

  33. Nanayakkara YS, Perera S, Bindiganavale S, Wanigasekara E, Moon H, Armstrong DW (2010) The effect of AC frequency on the electrowetting behavior of ionic liquids. Anal Chem 82(8):3146–3154

    Article  CAS  Google Scholar 

  34. Wanigasekara E, Zhang X, Nanayakkara Y, Payagala T, Moon H, Armstrong DW (2009) Linear tricationic room-temperature ionic liquids: synthesis, physiochemical properties, and electrowetting properties. ACS Appl Mater Interfaces 1(10):2126–2133

    Article  CAS  Google Scholar 

  35. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Mondello L (2012) Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques. J Chromatogr A 1255:130–144

    Article  CAS  Google Scholar 

  36. Krupčík J, Gorovenko R, Špánik I, Bočková I, Sandra P, Armstrong DW (2013) On the use of ionic liquid capillary columns for analysis of aromatic hydrocarbons in low-boiling petrochemical products by one-dimensional and comprehensive two-dimensional gas chromatography. J Chromatogr A 1301:225–236

    Article  Google Scholar 

  37. Delmonte P, Fardin-Kia AR, Rader JI (2013) Separation of fatty acid methyl esters by GC-online hydrogenation × GC. Anal Chem 85(3):1517–1524

    Article  CAS  Google Scholar 

  38. Zeng AX, Chin S-T, Nolvachai Y, Kulsing C, Sidisky LM, Marriott PJ (2013) Characterisation of capillary ionic liquid columns for gas chromatography–mass spectrometry analysis of fatty acid methyl esters. Anal Chim Acta 803:166–173

    Article  CAS  Google Scholar 

  39. Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2012) Room temperature ionic liquids: new GC stationary phases with a novel selectivity for flavor and fragrance analyses. J Chromatogr A 1268:130–138

    Article  CAS  Google Scholar 

  40. Delmonte P, Fardin-Kia AR, Kramer JK, Mossoba MM, Sidisky L, Tyburczy C, Rader JI (2012) Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A 1233:137–146

    Article  CAS  Google Scholar 

  41. Sanchez-Prado L, Lamas JP, Garcia-Jares C, Llompart M (2012) Expanding the applications of the ionic liquids as GC stationary phases: plasticizers and synthetic musks fragrances. Chromatographia 75(17–18):1039–1047

    Article  CAS  Google Scholar 

  42. Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L (2011) Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Anal Chem 83(20):7947–7954

    Article  CAS  Google Scholar 

  43. Ragonese C, Tranchida PQ, Sciarrone D, Mondello L (2009) Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. J Chromatogr A 1216(51):8992–8997

    Article  CAS  Google Scholar 

  44. Frink LA, Armstrong DW (2016) Determination of trace water content in petroleum and petroleum products. Anal Chem 88(16):8194–8201

    Article  CAS  Google Scholar 

  45. Frink LA, Weatherly CA, Armstrong DW (2014) Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols. J Pharm Biomed Anal 94:111–117

    Article  CAS  Google Scholar 

  46. Frink LA, Armstrong DW (2016) Water determination in solid pharmaceutical products utilizing ionic liquids and headspace gas chromatography. J Pharm Sci 105(8):2288–2292

    Article  CAS  Google Scholar 

  47. Frink LA, Armstrong DW (2016) The utilisation of two detectors for the determination of water in honey using headspace gas chromatography. Food Chem 205:23–27

    Article  CAS  Google Scholar 

  48. Talebi M, Frink LA, Patil RA, Armstrong DW (2017) Examination of the varied and changing ethanol content of commercial Kombucha products. Food Anal Methods. doi:10.1007/s12161-017-0980-5

    Google Scholar 

  49. Lambertus GR, Crank JA, McGuigan ME, Kendler S, Armstrong DW, Sacks RD (2006) Rapid determination of complex mixtures by dual-column gas chromatography with a novel stationary phase combination and spectrometric detection. J Chromatogr A 1135(2):230–240

    Article  CAS  Google Scholar 

  50. Sciarrone D, Tranchida PQ, Ragonese C, Schipilliti L, Mondello L (2010) Multidimensional GC coupled to MS for the simultaneous determination of oxygenate compounds and BTEX in gasoline. J Sep Sci 33(4–5):594–599

    Article  CAS  Google Scholar 

  51. Reid VR, Crank JA, Armstrong DW, Synovec RE (2008) Characterization and utilization of a novel triflate ionic liquid stationary phase for use in comprehensive two-dimensional gas chromatography. J Sep Sci 31(19):3429–3436

    Article  CAS  Google Scholar 

  52. Payagala T, Huang J, Breitbach ZS, Sharma PS, Armstrong DW (2007) Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem Mater 19(24):5848–5850

    Article  CAS  Google Scholar 

  53. Anderson JL, Ding R, Ellern A, Armstrong DW (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127(2):593–604

    Article  CAS  Google Scholar 

  54. Patil RA, Talebi M, Xu C, Bhawal SS, Armstrong DW (2016) Synthesis of thermally stable geminal dicationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem Mater 28(12):4315–4323

    Article  CAS  Google Scholar 

  55. Dettmer K (2014) Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters. Anal Bioanal Chem 406(20):4931–4939

    Article  CAS  Google Scholar 

  56. Lin C-C, Wasta Z, Mjøs SA (2014) Evaluation of the retention pattern on ionic liquid columns for gas chromatographic analyses of fatty acid methyl esters. J Chromatogr A 1350:83–91

    Article  CAS  Google Scholar 

  57. Grob K, Grob G (1978) Comprehensive, standardized quality test for glass capillary columns. J Chromatogr A 156(1):1–20

    Article  CAS  Google Scholar 

  58. Grob K, Grob G (1981) Testing capillary gas chromatographic columns. J Chromatogr A 219(1):13–20

    Article  CAS  Google Scholar 

  59. Harvey RG (1998) Environmental chemistry of PAHs. PAHs and related compounds. Springer, Berlin, pp 1–54

    Google Scholar 

  60. Manzano C, Hoh E, Simonich SLM (2012) Improved separation of complex polycyclic aromatic hydrocarbon mixtures using novel column combinations in GC × GC/ToF-MS. Environ Sci Technol 46(14):7677–7684

    Article  CAS  Google Scholar 

  61. Poster DL, Schantz MM, Sander LC, Wise SA (2006) Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem 386(4):859–881

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Robert A. Welch Foundation (Y0026) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest. The commercial SLB IL111 column was provided by MilliporeSigma and Len Sidisky is employee of MilliporeSigma.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R.A., Talebi, M., Sidisky, L.M. et al. Examination of Selectivities of Thermally Stable Geminal Dicationic Ionic Liquids by Structural Modification. Chromatographia 80, 1563–1574 (2017). https://doi.org/10.1007/s10337-017-3372-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3372-5

Keywords

Navigation