Skip to main content
Log in

Applications of Hyphenated Liquid Chromatography Techniques for Polymer Analysis

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

We find polymers everywhere in our daily activities, for example, as a part of consumer electronics products, healthcare devices, vehicles, etc. Analytical characterization of such materials is an important step towards understanding their properties and behavior in various applications. The increase of material complexity driven by highly demanding requirements for many applications necessitates the use of sophisticated analytical techniques to obtain sufficient insight into the structure of these materials. Coupling of liquid chromatography with other information-rich instrumental techniques becomes more and more important in the field of polymer characterization. Such combination can enable simultaneous separation, identification, and quantification of polymer sample components. In addition, it can provide information on interdependence of two polymer properties, e.g., molecular weight and chemical composition. Different hyphenated systems may be applied to address different problems in polymer research and development and a selection of the right technique may not be an easy and straightforward task. In this paper, the applications of LC-NMR, LC-IR, LC-Raman, LC-MS, LC-MALDI, LC × LC, and LC × Py-GC for polymer analysis are reviewed, their advantages and limitations are discussed, and practical challenges for the implementation of these techniques in a lab are addressed. Different hyphenated options are compared to facilitate selection of a suitable instrument for the particular problem at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced by permission of the Royal Society of Chemistry

Fig. 2
Fig. 3

Reprinted with permission from [49]. Copyright 2010 American Chemical Society

Fig. 4

Reprinted with permission from [51]. Copyright 2010 American Chemical Society

Fig. 5

Reprinted with permission from [88]. Copyright 2011 American Chemical Society

Fig. 6
Fig. 7

Reprinted from [92], with permission from Elsevier

Fig. 8

Reprinted with permission from [94]. Copyright 2013 American Chemical Society

Fig. 9

Reprinted with permission from [97]. Copyright 2012 American Chemical Society

Similar content being viewed by others

References

  1. Pasch H, Trathnigg B (2013) Multidimensional HPLC of polymers. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  2. Pasch H (2013) Hyphenated separation techniques for complex polymers. Polym Chem 4:2628–2650

    Article  CAS  Google Scholar 

  3. Malik MI, Pasch H (2014) Novel developments in the multidimensional characterization of segmented copolymers. Prog Polym Sci 39:87–123

    Article  CAS  Google Scholar 

  4. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  5. Fuller MP, Griffiths PR (1978) Diffuse reflectance measurements by infrared Fourier transform spectrometry. Anal Chem 50:1906–1910

    Article  CAS  Google Scholar 

  6. Vidrine DW, Mattson DR (1978) A practical real-time Fourier transform infrared detector for liquid chromatography. Appl Spectrosc 32:502–506

    Article  CAS  Google Scholar 

  7. Plass M, Albrecht A, Bruell R (2010) Liquid Chromatography infrared and Size Exclusion Chromatography-infrared Analysis for Polymer Characterization. In: Encyclopedia of analytical chemistry. Wiley, Weinheim

  8. Kok SJ, Wold CA, Hankemeier Th, Schoenmakers PJ (2003) Comparison of on-line flow-cell and off-line solvent-elimination interfaces for size-exclusion chromatography and Fourier-transform infrared spectroscopy in polymer analysis. J Chromatogr A 1017:83–96

    Article  CAS  Google Scholar 

  9. Pasch H, Malik MI, Macko T (2013) Recent advances in high-temperature fractionation of polyolefins. Adv Polym Sci 251:77–140

    Article  CAS  Google Scholar 

  10. Kuligowski J (2011) New instrumental and chemometric developments for the on-line hyphenation of liquid chromatography and infrared spectroscopy. Univ. Valencia, Valencia

    Google Scholar 

  11. Kuligowski J (2012) On-line coupling of liquid chromatography and infrared spectroscopy: new instrumental and chemometric tools LAP LAMBERT. Academic Publishing, Saarbrücken

    Google Scholar 

  12. Istvan K, Rajko R, Keresztury G (2006) Towards the solution of the eluent elimination problem in high-performance liquid chromatography–infrared spectroscopy measurements by chemometric methods. J Chromatogr A 1104:154–163

    Article  CAS  Google Scholar 

  13. Kuligowski J, Quintás G, Garrigues S, Lendl B, de la Guardia M (2010) Recent advances in on-line liquid chromatography-infrared spectrometry (LC-IR). TrAC Trends Anal Chem 29:544–552

    Article  CAS  Google Scholar 

  14. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2010) Application of point-to-point matching algorithms for background correction in on-line liquid chromatography–Fourier transform infrared spectrometry (LC–FTIR). Talanta 80:1771–1776

    Article  CAS  Google Scholar 

  15. Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2009) New background correction approach based on polynomial regressions for on-line liquid chromatography–Fourier transform infrared spectrometry. J Chromatogr A 1216:3122–3130

    Article  CAS  Google Scholar 

  16. Kuligowski J, Quintás G, Tauler R, Lendl B, De la Guardia M (2011) Background correction and multivariate curve resolution of online liquid chromatography with infrared spectrometric detection. Anal Chem 83:4855–4862

    Article  CAS  Google Scholar 

  17. Johnson CC, Hellgeth JW, Taylor LT (1985) Reversed-phase liquid chromatography with Fourier infrared spectrometric detection using a flow cell interface. Anal Chem 57:610–615

    Article  CAS  Google Scholar 

  18. Somsen GW, Gooijer C, Brinkman UATh (1999) Liquid chromatography—Fourier-transform infrared spectrometry. J Chromatogr A 856:213–242

    Article  CAS  Google Scholar 

  19. Willis JN, Dwyer JL, Liu MX (1997) Polymer characterization using SEC-FTIR. Int J Polym Anal Charact 4:21–29

    Article  CAS  Google Scholar 

  20. Kuligowski J, Quintás G, De la Guardia M, Lendl B (2010) Analytical potential of mid-infrared detection in capillary electrophoresis and liquid chromatography: a review. Anal Chim Acta 679:31–42

    Article  CAS  Google Scholar 

  21. Dwyer JL, Zhou M (2011) Polymer characterization by combined chromatography-infrared spectroscopy. Int J Spectrosc 2011:1–12

    Article  CAS  Google Scholar 

  22. Jansen JAJ (1990) On-line liquid chromatography—Fourier transform infrared spectroscopy for the analysis of polymers and additives. Fresenius J Anal Chem 337:398–402

    Article  CAS  Google Scholar 

  23. Zhou M (2011) LC-IR applications in polymer industries. http://www.slideshare.net/mzhou45/lcir-applications-in-polymer-related-industries. Accessed Jan 2017

  24. Prabhu KN, Macko T, Bruell R, Remerie K, Tacx J, Garg P, Ginzburg A (2016) Separation of maleic anhydride grafted polypropylene using multidimensional high-temperature liquid chromatography. J Chromatogr A 1441:96–105

    Article  CAS  Google Scholar 

  25. Malanin M, Eichhorn KJ, Lederer A, Treppe P, Adam G, Fischer D, Voigt D (2009) On-line preferential solvation studies of polymers by coupled chromatographic-Fourier transform infrared spectroscopic flow-cell technique. J Chromatogr A 1216:8939–8946

    Article  CAS  Google Scholar 

  26. Piel C, Albrecht A, Neubauer C, Klampfl CW, Reussner J (2011) Improved SEC-FTIR method for the characterization of multimodal high-density polyethylenes. Anal Bioanal Chem 400:2607–2613

    Article  CAS  Google Scholar 

  27. Beskers TF, Hofe T, Wilhelm M (2015) Development of a chemically sensitive online SEC detector based on FTIR spectroscopy. Polym Chem 6:128–142

    Article  CAS  Google Scholar 

  28. Beskers TF, Brandstetter M, Kuligowski J, Quintas G, Wilhelm M, Lendl B (2014) High performance liquid chromatography with mid-infrared detection based on a broadly tunable quantum cascade laser. Analyst 139:2057–2064

    Article  CAS  Google Scholar 

  29. Schluecker S (2010) Surface enhanced Raman spectroscopy analytical, biophysical and life science applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  30. Hyphenated and alternative methods of detection in chromatography. CRC Press, Taylor & Francis group, Boca Raton. 2012

  31. Dijkstra RJ, Ariese F, Gooijer C, Brinkman UATh (2005) Raman spectroscopy as a detection method for liquid-separation techniques. TrAC Trends Anal Chem 24:304–323

    Article  CAS  Google Scholar 

  32. Pothier NJ, Force RK (1990) Surface-enhanced Raman spectroscopy at a silver electrode as a detection system in flowing streams. Anal Chem 62:678–680

    Article  CAS  Google Scholar 

  33. Pothier NJ, Force RK (1994) Detection of biologically important compounds in flowing aqueous streams by surface-enhanced Raman spectroscopy at a silver electrode. Appl Spectrosc 48:421–425

    Article  CAS  Google Scholar 

  34. Sheng R, Ni F, Cotton TM (1991) Determination of purine bases by reversed-phase high-performance liquid chromatography using real-time surface-enhanced Raman spectroscopy. Anal Chem 63:437

    Article  CAS  Google Scholar 

  35. Somsen GW, Coulter SK, Gooijer C, Velthorst NH, Brinkman UATh (1997) Coupling of column liquid chromatography and surface-enhanced resonance Raman spectroscopy via a thin-layer chromatographic plate. Anal Chim Acta 349:189–197

    Article  CAS  Google Scholar 

  36. Seifar RM, Altelaar MAF, Dijkstra RJ, Ariese F, Brinkman UATh, Gooijer C (2000) Surface-enhanced resonance Raman spectroscopy as an identification tool in column liquid chromatography. Anal Chem. 72:5718–5724

    Article  CAS  Google Scholar 

  37. Farquharson S, Maksymiuk P. Simultaneous chemical separation and surface-enhanced raman spectral detection using metal-doped sol-gels. US Patent US 6943031 B22005

  38. Dijkstra RJ, Bader AN, Hoornweg G, Hoornweg GPh, Brinkman UATh, Gooijer C (1999) On-line coupling of column liquid chromatography and Raman spectroscopy using a liquid core waveguide. Anal Chem 71:4575

    Article  CAS  Google Scholar 

  39. Surowiec I, Baena JR, Frank J, Laurell Th, Nilsson J, Trojanowicz M, Lendl B (2005) Flow-through microdispenser for interfacing μ-HPLC to Raman and mid-IR spectroscopic detection. J Chromatogr A 1080:132–139

    Article  CAS  Google Scholar 

  40. Pitkanen L, Urbas AA, Striegel AM (2015) On the feasibility of determining polymer chemical heterogeneity by SEC with continuous off-line Raman detection. Polym Chem 6:4864–4874

    Article  CAS  Google Scholar 

  41. Hatada K, Kitayama T (2004) NMR spectroscopy of polymers. Springer, Berlin

    Book  Google Scholar 

  42. Albert K (2002) On-line LC-NMR and related techniques, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  43. Elipe MVS (2011) LC-NMR and other hyphenated NMR techniques, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  44. Gonnella NC (2013) LC-NMR. Expanding the limits of structure elucidation. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Cladridge TWD (1999) High-resolution NMR techniques in organic chemistry. Elsevier, Amsterdam

    Google Scholar 

  46. Hiller W, Sinha P, Hehn M, Pasch H (2014) On-line LC-NMR—from an expensive toy to a powerful tool in polymer analysis. Prog Polym Sci 29:979–1016

    Article  CAS  Google Scholar 

  47. Hiller W, Hehn M, Hofe T, Oleschko K, Montag P (2012) On-line fractionated size exclusion chromatography-nuclear magnetic resonance of polymers with 1H and 2H nuclear magnetic resonance detection. J Chromatogr A 1240:77–82

    Article  CAS  Google Scholar 

  48. Sturm S, Seger C (2012) Liquid chromatography–nuclear magnetic resonance coupling as alternative to liquid chromatography–mass spectrometry hyphenations: curious option or powerful and complementary routine tool? J Chromatogr A 1259:50–61

    Article  CAS  Google Scholar 

  49. Hiller W, Hehn M, Hofe T, Oleschko K (2010) Online size exclusion chromatography–NMR for the determination of molar mass distributions of copolymers. Anal Chem 82:8244–8250

    Article  CAS  Google Scholar 

  50. Hehn M, Wagner T, Hiller W (2014) Direct quantification of molar masses of copolymers by online liquid chromatography under critical conditions-nuclear magnetic resonance and size exclusion chromatography–nuclear magnetic resonance. Anal Chem 86:490–497

    Article  CAS  Google Scholar 

  51. Hiller W, Pasch H, Sinha P, Wagner T, Thiel J, Wagner M et al (2010) Coupling of NMR and liquid chromatography at critical conditions: a new tool for the block length and microstructure analysis of block copolymers. Macromolecules 43:4853–4863

    Article  CAS  Google Scholar 

  52. Hehn M, Sinha P, Pasch H, Hiller W (2015) Onflow liquid chromatography at critical conditions coupled to 1H and 2H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition. J Chromatogr A 1387:69–74

    Article  CAS  Google Scholar 

  53. Hehn M, Maiko K, Pasch H, Hiller W (2013) An efficient method for the analysis of PMMA with respect to tacticity. Macromolecules 46:7678–7686

    Article  CAS  Google Scholar 

  54. Cudaj M, Guthausen G, Hofe T, Wilhelm M (2011) SEC-MR-NMR: online coupling of size exclusion chromatography and medium resolution NMR spectroscopy. Macromol Rapid Commun 32:665–670

    Article  CAS  Google Scholar 

  55. Holcapek M, Jirasko R, Lisa M (2012) Recent developments in liquid chromatography–mass spectrometry and related techniques. J Chromatogr A 1259:3–15

    Article  CAS  Google Scholar 

  56. Hoteling AJ, Papagelis PT (2014) Structural characterization of silicon polymers using compositional ultra-high performance liquid chromatography separation, electrospray ionization, and high resolution/accurate mass. Anal Chim Acta 808:231–239

    Article  CAS  Google Scholar 

  57. Gruendling T, Guilhaus M, Barner-Kowollik C (2009) Fast and accurate determination of absolute individual molecular weight distributions from mixtures of polymers via size exclusion chromatography–electrospray ionization mass spectrometry. Macromolecules 42:6366–6374

    Article  CAS  Google Scholar 

  58. Gruendling T, Junkers T, Guilhaus M, Barner-Kowollik C (2010) Mark-Houwink parameters for the universal calibration of acrylate, methacrylate and vinyl acetate polymers determined by online size-exclusion chromatography–mass spectrometry. Macromol Chem Phys 211:520–528

    Article  CAS  Google Scholar 

  59. Falkenhagen J, Weidner S (2009) Determination of critical conditions of adsorption for chromatography of polymers. Anal Chem 81:282–287

    Article  CAS  Google Scholar 

  60. Schneider C, Sablier M, Desmazieres B (2008) Characterization by mass spectrometry of an unknown polysiloxane sample used under uncontrolled medical conditions for cosmetic surgery. Rapid Commun Mass Spec. 22:3353–3361

    Article  CAS  Google Scholar 

  61. van Leeuwen SM, Tan B, Grijpma DW, Feijen J, Karst U (2007) Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization. Rapid Commun Mass Spec 21:2629–2637

    Article  CAS  Google Scholar 

  62. Crotty S, Gerislioglu S, Endres KJ, Wesdemiotis C, Schubert US (2016) Polymer architecture via mass spectrometry and hyphenated techniques: a review. Anal Chim Acta 932:1–21

    Article  CAS  Google Scholar 

  63. Barner-Kowollik C, Gruendling T, Falkenhagen J, Weidner S (2012) Mass spectrometry in polymer chemistry. Wiley VCH, Weinheim

    Google Scholar 

  64. Montaudo G, Samperi F, Montaudo M (2006) Characterization of synthetic polymers by MALDI–MS. Prog Polym Sci 31:277–357

    Article  CAS  Google Scholar 

  65. Murgasova R, Hercules DM (2003) MALDI of synthetic polymers—an update. Int J Mass Spectrom 226:151–162

    Article  CAS  Google Scholar 

  66. Musyimi HK, Narcisse DA, Zhang X, Stryjewski W, Soper SA, Murray KK (2004) On-line CE-MALDI TOF MS using a rotating ball interface. Anal Chem 76:5968–5973

    Article  CAS  Google Scholar 

  67. Preisler J, Hu P, Rejtar T, Karger BL (2000) Capillary electrophoresis-matrix assisted laser desorption/ionization time-of-flight mass spectrometry using a vacuum deposition interface. Anal Chem 72:4785–4795

    Article  CAS  Google Scholar 

  68. Orsnes H, Graf T, Degn H, Murray KK (2000) A rotating ball inlet for on-line MALDI mass spectrometry. Anal Chem 72:251–254

    Article  CAS  Google Scholar 

  69. Fei X, Wei G, Murray KK (1996) On-line coupling of gel permeation chromatography with aerosol MALDI mass spectrometry. Anal Chem 68:3555–3560

    Article  CAS  Google Scholar 

  70. Zhan Q, Gusev A, Hercules DM (1999) A novel interface for on-line coupling of liquid capillary chromatography with matrix-assisted laser desorption/ionization detection. Rapid Commun Mass Spec 13:2278–2283

    Article  CAS  Google Scholar 

  71. Laiko VV, Baldwin MA, Burlingame AL (2000) Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:652–657

    Article  CAS  Google Scholar 

  72. Daniel JM, Laiko VV, Doroshenko VM, Zenobi R (2005) Interfacing liquid chromatography with atmospheric pressure MALDI-MS. Anal Bioanal Chem 383:895–902

    Article  CAS  Google Scholar 

  73. Daniel JM, Ehala S, Friess SD, Zenobi R (2004) On-line atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Analyst 129:574–578

    Article  CAS  Google Scholar 

  74. Li L (2010) MALDI mass spectrometry for synthetic polymer analysis. Wiley, Hoboken

    Google Scholar 

  75. Zhang BY, McDonald C, Li L (2004) Combining liquid chromatography with MALDI mass spectrometry using a heated droplet interface. Anal Chem 76:992–1001

    Article  CAS  Google Scholar 

  76. Young JB, Li L (2007) Impulse-driven heated-droplet deposition interface for capillary and microbore LC-MALDI MS and MS/MS. Anal Chem 79:5927–5934

    Article  CAS  Google Scholar 

  77. Weidner S, Falkenhagen J (2009) Imaging mass spectrometry for examining localization of polymeric composition in matrix-assisted laser desorption/ionization samples. Rapid Commun Mass Spec 23:653–660

    Article  CAS  Google Scholar 

  78. Weidner S, Knappe P, Panne U (2011) MALDI-TOF imaging mass spectrometry of artifacts in “dried droplet” polymer samples. Anal Bioanal Chem 401:127–134

    Article  CAS  Google Scholar 

  79. Gabriel SJ, Schwarzinger C, Schwarzinger B, Panne U, Weidner S (2014) Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots. J Am Soc Mass Spectrom 25:1356–1363

    Article  CAS  Google Scholar 

  80. Coulier L, Kaal ER, Hankemeier T (2005) Comprehensive two-dimensional liquid chromatography and hyphenated liquid chromatography to study the degradation of poly(bisphenol A)carbonate. J Chromatogr A 1070:79–87

    Article  CAS  Google Scholar 

  81. Esser E, Keil C, Braun D, Montag P, Pasch H (2000) Matrix-assisted laser desorption/ionization mass spectrometry of synthetic polymers. 4. Coupling of size exclusion chromatography and MALDI-TOF using a spray-deposition interface. Polymer 41:4039–4046

    Article  CAS  Google Scholar 

  82. Falkenhagen J, Friedrich JF, Schulz G, Kruger RP, Much H, Weidner S (2000) Liquid adsorption chromatography near critical conditions of adsorption coupled with matrix-assisted laser desorption/ionization mass spectrometry. Int J Polym Anal Charact 5:549–562

    Article  CAS  Google Scholar 

  83. Lou XW, van Dongen JLJ (2000) Direct sample fraction deposition using electrospray in narrow-bore size-exclusion chromatography/matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for polymer characterization. J Mass Spectrom 35:1308–1312

    Article  CAS  Google Scholar 

  84. Axelsson J, Hoberg AM, Waterson C, Myatt P, Shield GL, Varney J et al (1997) Improved reproducibility and increased signal intensity in matrix-assisted laser desorption/ionization as a result of electrospray sample preparation. Rapid Commun Mass Spec 11:209–213

    Article  CAS  Google Scholar 

  85. Hanton SD, Hyder IZ, Stets JR, Owens KG, Blair WR, Guttman CM et al (2004) Investigations of electrospray sample deposition for polymer MALDI mass spectrometry. J Am Soc Mass Spectrom 15:168–179

    Article  CAS  Google Scholar 

  86. Nielen MWF (1998) Polymer analysis by micro-scale size-exclusion chromatography/MALDI time-of-flight mass spectrometry with a robotic interface. Anal Chem 70:1563–1568

    Article  CAS  Google Scholar 

  87. Weidner S, Falkenhagen J, Krueger R-P, Just U (2007) Principle of two-dimensional characterization of copolymer. Anal Chem 79:4814–4819

    Article  CAS  Google Scholar 

  88. Weidner S, Falkenhagen J (2011) LC-MALDI-TOF imaging MS: a new approach in combining chromatography and mass spectrometry of copolymers. Anal Chem 83:9153–9158

    Article  CAS  Google Scholar 

  89. Pasch H, Schrepp W (2003) MALDI-TOF mass spectrometry of synthetic polymers. Springer, Berlin

    Book  Google Scholar 

  90. Baumgaertel A, Altuntas E, Schubert US (2012) Recent developments in the detailed characterization of polymers by multidimensional chromatography. J Chromatogr A 1240:1–20

    Article  CAS  Google Scholar 

  91. Uliyanchenko E, van der Wal S, Schoenmakers PJ (2012) Challenges in polymer analysis by liquid chromatography. Polym Chem 3:2313–2335

    Article  CAS  Google Scholar 

  92. Malik MI, Lee S, Chang T (2016) Comprehensive two-dimensional liquid chromatographic analysis of poloxamers. J Chromatogr A 1442:33–41

    Article  CAS  Google Scholar 

  93. Jeong J, Kim K, Lee R, Lee S, Kim H, Jung H et al (2014) Preparation and analysis of bicyclic polystyrene. Macromolecules 47:3791–3796

    Article  CAS  Google Scholar 

  94. Maiko K, Hehn M, Hiller W, Pasch H (2013) Comprehensive two-dimensional liquid chromatography of stereoregular poly(methyl methacrylates) for tacticity and molar mass analysis. Anal Chem 85:9793–9798

    Article  CAS  Google Scholar 

  95. Prabhu KN, Bruell R, Macko T, Remerie K, Tacx J, Garg P, Ginzburg A (2015) Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography. J Chromatogr A 1419:67–80

    Article  CAS  Google Scholar 

  96. MacNair JE, Lewis KC, Jorgenson JW (1997) Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. Anal Chem 69:983–989

    Article  CAS  Google Scholar 

  97. Uliyanchenko E, Cools PJCH, van der Wal S, Schoenmakers PJ (2012) Comprehensive two-dimensional ultrahigh-pressure liquid chromatography for separations of polymers. Anal Chem 84:7802–7809

    Article  CAS  Google Scholar 

  98. Janco M, Alexander JN, Bouvier ESP, Morrison D (2013) Ultra-high performance size-exclusion chromatography of synthetic polymers. J Sep Sci 36:2718–2727

    Article  CAS  Google Scholar 

  99. Uliyanchenko E, Wold C (2016) Ultrahigh-pressure size-exclusion separations of engineering plastics: challenges and opportunities. LCGC Europe 29:22–27

    CAS  Google Scholar 

  100. Li JW, Carr PW (1997) Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures. Anal Chem 69:2530–2536

    Article  CAS  Google Scholar 

  101. Anita FD, Horvath C (1988) High-performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules. J Chromatogr A 435:1–15

    Article  Google Scholar 

  102. Stoll DR, Li X, Wang X, Carr PW, Porter SEG, Rutan SC (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168:3–43

    Article  CAS  Google Scholar 

  103. Im K, Park HW, Lee S, Chang T (2009) Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature. J Chromatogr A 1216:4606–4610

    Article  CAS  Google Scholar 

  104. Hiller W, Hehn M, Sinha P, Raust J-A, Pasch H (2012) Online coupling of two-dimensional liquid chromatography and NMR for the analysis of complex polymers. Macromolecules 45:7740–7748

    Article  CAS  Google Scholar 

  105. Kok SJ, Hankemeier Th, Schoenmakers PJ (2005) Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers. J Chromatogr A 1098:104–110

    Article  CAS  Google Scholar 

  106. Barqawi H, Ostas E, Liu B, Carpentier J-F, Binder W (2012) Multidimensional charaterization of alpha, omega-telechelic poly(epsilon-caprolactone)s via online coupling of 2D chromatographic methods (LC/SEC) and ESI-TOF/MALDI-TOF-MS. Macromolecules 45:9779–9790

    Article  CAS  Google Scholar 

  107. Kaal ER, Alkema G, Kurano M, Geissler M, Janssen H-G (2007) On-line size exclusion chromatography–pyrolysis-gas chromatography–mass spectrometry for copolymer characterization and additive analysis. J Chromatogr A 1143:182–189

    Article  CAS  Google Scholar 

  108. Kaal ER, Kurano M, Geissler M, Janssen H-G (2008) Hyphenation of aqueous liquid chromatography to pyrolysis-gas chromatography and mass spectrometry for the comprehensive characterization of water-soluble polymers. J Chromatogr A 1186:222–227

    Article  CAS  Google Scholar 

  109. Brander E, Wold C (2014) The identification and quantification of a high molecular-weight light stabilizer in polycarbonate by application of an online coupling of size exclusion chromatography in stopped flow mode with pyrolysis gas chromatography time of flight mass spectroscopy. J Chromatogr A 1362:309–312

    Article  CAS  Google Scholar 

  110. Kaal ER (2010) Extending the applicability of gas chromatography. University of Amsterdam, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Christian Wold and Olivier Guise for their valuable suggestions on the content of this manuscript. The author also wants to thank Johannes Guenther for the useful discussions on the LC-NMR hyphenation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Uliyanchenko.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Published in the topical collection Young Investigators in Separation Science with editors D. Mangelings, G. Massolini, G. K. E. Scriba, R. M. Smith, and A. M. Striegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uliyanchenko, E. Applications of Hyphenated Liquid Chromatography Techniques for Polymer Analysis. Chromatographia 80, 731–750 (2017). https://doi.org/10.1007/s10337-016-3193-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3193-y

Keywords

Navigation