Skip to main content

Advertisement

Log in

Indirect Enantioseparation of Amino Acids by CE Using Automated In-Capillary Derivatization with ortho-Phthalaldehyde and N-Acetyl-l-Cysteine

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple CE method for the assessment of enantiomeric purity of individual amino acids (AAs) is presented. The AAs were derivatized with ortho-phthalaldehyde and a thiol in the capillary by means of successive hydrodynamic injections (5 s, 0.5 psi) of derivatization solution, sample and derivatization solution. A voltage of 1 kV was applied to blend the solutions and to start the reaction. Subsequently, the derivatives were separated using a background electrolyte (BGE) composed of 50 mM borate buffer (pH = 9.25) and 7.5 mM of a cyclodextrin (CD). To find the optimal derivatization reagent and CD, the impact of the thiols 3-mercaptopropionic acid (MPA), N-acetyl-l-cysteine (NAC) and N-isobutyryl-l-cysteine (NIBLC), and various neutral and negatively charged CDs on the resolution were assessed. The use of NAC and γ-CD enabled the best indirect enantioseparation of 16 AAs. Serine could be separated with β-CD, and proline and cysteine are not suitable for automated OPA-derivatization. The resolutions were ranging from 2.3 to 16.6. A method was validated representative for the AAs methionine, aspartic acid, tryptophan and phenylalanine. The recovery (n = 3) of the minor enantiomers was found to be within 95.1 and 107.5 %. The relative standard deviation (RSD) was ranging from 1.2 to 6.4 %. The method is accurate, precise, linear, and robust. For methionine it could be demonstrated that the ratio of l- and d-AA ranging from 1 to 99 % can be evaluated by direct comparison of the corrected peak areas with satisfactory accuracy ranging between 92.1 and 115.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acid

BGE:

Background electrolyte

CD:

Cyclodextrin

CDA:

Chiral derivatization agent

CMBCD:

Carboxymethyl-β-cyclodextrin

DMCD:

2,6-Di-O-methyl-β-cyclodextrin

HPBCD:

(2-Hydroxypropyl)-β-cyclodextrin

HPGCD:

(2-Hydroxypropyl)-γ-cyclodextrin

IS:

Internal standard

MPA:

3-Mercaptopropionic acid

NAC:

N-Acetyl-l-cysteine

NIBLC:

N-Isobutyryl-l-cysteine

OPA:

ortho-Phthalaldehyde

SBCD:

Sulfated β-cyclodextrin sodium salt

TMCD:

2,3,6-Tri-O-methyl-β-cyclodextrin

References

  1. Wiesehan K, Buder K, Linke RP, Patt S, Stoldt M, Unger E, Schmitt B, Bucci E, Willbold D (2003) Selection of d-amino-acid peptides that bind to Alzheimer’s disease amyloid peptide Aβ1–42 by mirror image phage display. ChemBioChem 4(8):748–753. doi:10.1002/cbic.200300631

    Article  CAS  Google Scholar 

  2. Kato S, Masuda Y, Konishi M, Oikawa T (2015) Enantioselective analysis of d- and l-amino acids from mouse macrophages using high performance liquid chromatography. J Pharm Biomed Anal 116:101–104. doi:10.1016/j.jpba.2015.04.028

    Article  CAS  Google Scholar 

  3. Oguri S, Yokoi K, Motohase Y (1997) Determination of amino acids by high-performance capillary electrophoresis with on-line mode in-capillary derivatization. J Chromatogr A 787(1–2):253–260. doi:10.1016/S0021-9673(97)00664-X

    Article  CAS  Google Scholar 

  4. Paul P, de Belleroche J (2015) Experimental approaches for elucidating co-agonist regulation of NMDA receptor in motor neurons: therapeutic implications for amyotrophic lateral sclerosis (ALS). J Pharm Biomed Anal 116:2–6. doi:10.1016/j.jpba.2014.12.040

    Article  CAS  Google Scholar 

  5. Billard J-M (2015) d-Serine in the aging hippocampus. J Pharm Biomed Anal 116:18–24. doi:10.1016/j.jpba.2015.02.013

    Article  CAS  Google Scholar 

  6. Errico F, Mothet J-P, Usiello A (2015) d-Aspartate: an endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 116:7–17. doi:10.1016/j.jpba.2015.03.024

    Article  CAS  Google Scholar 

  7. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) d-Amino acids trigger biofilm disassembly. Science 328(5978):627–629. doi:10.1126/science.1188628

    Article  CAS  Google Scholar 

  8. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino-acid oxidase activity. J Chromatogr B Biomed Sci Appl 757(1):119–125. doi:10.1016/S0378-4347(01)00131-1

    Article  CAS  Google Scholar 

  9. Holzgrabe U, Nap C-J, Almeling S (2010) Control of impurities in l-aspartic acid and l-alanine by high-performance liquid chromatography coupled with a corona charged aerosol detector. J Chromatogr A 1217(3):294–301

    Article  CAS  Google Scholar 

  10. Yan D, Li G, Xiao X-H, Dong X-P, Li Z-L (2007) Direct determination of fourteen underivatized amino acids from Whitmania pigra by using liquid chromatography-evaporative light scattering detection. J Chromatogr A 1138(1):301–304

    Article  CAS  Google Scholar 

  11. Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B 879(29):3078–3095. doi:10.1016/j.jchromb.2011.03.016

    Article  CAS  Google Scholar 

  12. Scriba GKEV (2008) Cyclodextrins in capillary electrophoresis enantioseparations—recent developments and applications. J Sep Sci 31(11):1991–2011. doi:10.1002/jssc.200800095

    Article  CAS  Google Scholar 

  13. Tang W, Ong TT, Ng S-C (2007) Chiral separation of dansyl amino acids in capillary electrophoresis using mono-(3-methyl-imidazolium)-β-cyclodextrin chloride as selector. J Sep Sci 30(9):1343–1349. doi:10.1002/jssc.200600461

    Article  CAS  Google Scholar 

  14. Wu B, Wang Q, Liu Q, Xie J, Yun L (2005) Capillary electrophoresis direct enantioseparation of aromatic amino acids based on mixed chelate-inclusion complexation of aminoethylamino-β-cyclodextrin. Electrophoresis 26(4–5):1013–1017. doi:10.1002/elps.200410078

    Article  CAS  Google Scholar 

  15. Schultz CL, Moini M (2003) Analysis of underivatized amino acids and their d/l-enantiomers by sheathless capillary electrophoresis/electrospray ionization-mass spectrometry. Anal Chem 75(6):1508–1513. doi:10.1021/ac0263925

    Article  CAS  Google Scholar 

  16. Park H-J, Choi Y, Lee W, Kim K-R (2004) Enantioseparation of aromatic amino acids and amino acid esters by capillary electrophoresis with crown ether and prediction of enantiomer migration orders by a three-dimensional quantitative structure-property relationship/comparative field analysis model. Electrophoresis 25(16):2755–2760. doi:10.1002/elps.200405963

    Article  CAS  Google Scholar 

  17. Moini M, Schultz CL, Mahmood H (2003) CE/electrospray ionization-MS analysis of underivatized d/l-amino acids and several small neurotransmitters at attomole levels through the use of 18-crown-6-tetracarboxylic acid as a complexation reagent/background electrolyte. Anal Chem 75(22):6282–6287. doi:10.1021/ac034708i

    Article  CAS  Google Scholar 

  18. Ward TJ, Farris Iii AB (2001) Chiral separations using the macrocyclic antibiotics: a review. J Chromatogr A 906(1–2):73–89. doi:10.1016/S0021-9673(00)00941-9

    Article  CAS  Google Scholar 

  19. Bednar P, Aturki Z, Stransky Z, Fanali S (2001) Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers. Electrophoresis 22(11):2129–2135. doi:10.1002/1522-2683(20017)22:11<2129:AID-ELPS2129>3.0.CO;2-J

    Article  CAS  Google Scholar 

  20. Aboul-Enein HY, Ali I (2000) Macrocyclic antibiotics as effective chiral selectors for enantiomeric resolution by liquid chromatography and capillary electrophoresis. Chromatographia 52(11):679–691. doi:10.1007/bf02490991

    Article  CAS  Google Scholar 

  21. Otsuka K, Terabe S (2000) Enantiomer separation of drugs by micellar electrokinetic chromatography using chiral surfactants. J Chromatogr A 875(1–2):163–178. doi:10.1016/S0021-9673(99)01167-X

    Article  CAS  Google Scholar 

  22. El Rassi Z (2000) Chiral glycosidic surfactants for enantiomeric separation in capillary electrophoresis. J Chromatogr A 875(1–2):207–233. doi:10.1016/S0021-9673(00)00113-8

    Article  Google Scholar 

  23. Hödl H, Schmid MG, Gübitz G (2008) Chiral separation of amino acids and glycyl dipeptides by chiral ligand-exchange capillary electrophoresis comparing Cu(II), Co(II), Ni(II) and Zn(II) complexes of three different sugar acids. J Chromatogr A 1204(2):210–218. doi:10.1016/j.chroma.2008.05.071

    Article  Google Scholar 

  24. Karbaum A, Jira T (2000) Chiral separation of unmodified amino acids with non-aqueous capillary electrophoresis based on the ligand-exchange principle. J Chromatogr A 874(2):285–292. doi:10.1016/S0021-9673(00)00102-3

    Article  CAS  Google Scholar 

  25. Lu X, Chen Y, Guo L, Yang Y (2002) Chiral separation of underivatized amino acids by ligand-exchange capillary electrophoresis using a copper(II)–l-lysine complex as selector. J Chromatogr A 945(1–2):249–255. doi:10.1016/S0021-9673(01)01494-7

    Article  CAS  Google Scholar 

  26. Schmid MG, Grobuschek N, Lecnik O, Gübitz G (2001) Chiral ligand-exchange capillary electrophoresis. J Biochem Biophys Methods 48(2):143–154. doi:10.1016/S0165-022X(01)00145-2

    Article  CAS  Google Scholar 

  27. Lu X, Chen Y (2002) Chiral separation of amino acids derivatized with fluoresceine-5-isothiocyanate by capillary electrophoresis and laser-induced fluorescence detection using mixed selectors of β-cyclodextrin and sodium taurocholate. J Chromatogr A 955(1):133–140. doi:10.1016/S0021-9673(02)00186-3

    Article  CAS  Google Scholar 

  28. Fradi I, Servais A-C, Lamalle C, Kallel M, Abidi M, Crommen J, Fillet M (2012) Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization. J Chromatogr A 1267:121–126. doi:10.1016/j.chroma.2012.05.098

    Article  CAS  Google Scholar 

  29. Novatchev N, Holzgrabe U (2002) Evaluation of amino sugar, low molecular peptide and amino acid impurities of biotechnologically produced amino acids by means of CE. J Pharm Biomed Anal 28(3):475–486

    Article  CAS  Google Scholar 

  30. Kopec S, Holzgrabe U (2007) Amino acids: aspects of impurity profiling by means of CE. Electrophoresis 28(13):2153–2167

    Article  CAS  Google Scholar 

  31. Roth M (1971) Fluorescence reaction for amino acids. Anal Chem 43(7):880–882

    Article  CAS  Google Scholar 

  32. Underberg WJ, Waterval J (2002) Derivatization trends in capillary electrophoresis: an update. Electrophoresis 23(22–23):3922–3933

    Article  CAS  Google Scholar 

  33. Oguri S, Watanabe S, Abe S (1997) Determination of histamine and some other amines by high-performance capillary electrophoresis with on-line mode in-capillary derivatization. J Chromatogr A 790(1–2):177–183. doi:10.1016/S0021-9673(97)00719-X

    Article  CAS  Google Scholar 

  34. Oguri S, Kumazaki M, Kitou R, Nonoyama H, Tooda N (1999) Elucidation of intestinal absorption of d,l-amino acid enantiomers and aging in rats. Biochim Biophys Acta 1472(1–2):107–114. doi:10.1016/S0304-4165(99)00110-5

    Article  CAS  Google Scholar 

  35. EDQM (2015) European pharmacopoeia, 8th edn. Council of Europe, Strasbourg

    Google Scholar 

  36. Cooper JDH, Ogden G, McIntosh J, Turnell DC (1984) The stability of the o-phthalaldehyde/2-mercaptoethanol derivatives of amino acids: an investigation using high-pressure liquid chromatography with a precolumn derivatization technique. Anal Biochem 142(1):98–102. doi:10.1016/0003-2697(84)90522-0

    Article  CAS  Google Scholar 

  37. Molnár-Perl I, Bozor I (1998) Comparison of the stability and UV and fluorescence characteristics of the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-l-cysteine reagents and those of their amino acid derivatives. J Chromatogr A 798(1–2):37–46. doi:10.1016/S0021-9673(97)01222-3

    Article  Google Scholar 

  38. Molnár-Perl I, Vasanits A (1999) Stability and characteristics of the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-l-cysteine reagents and their amino acid derivatives measured by high-performance liquid chromatography1. J Chromatogr A 835(1–2):73–91. doi:10.1016/S0021-9673(98)01088-7

    Article  Google Scholar 

  39. Kaale E, Van Goidsenhoven E, Van Schepdael A, Roets E, Hoogmartens J (2001) Electrophoretically mediated microanalysis of gentamicin with in-capillary derivatization and UV detection. Electrophoresis 22(13):2746–2754. doi:10.1002/1522-2683(200108)22:13<2746:AID-ELPS2746>3.0.CO;2-2

    Article  CAS  Google Scholar 

  40. Kaale E, Van Schepdael A, Roets E, Hoogmartens J (2003) Determination of kanamycin by electrophoretically mediated microanalysis with in-capillary derivatization and UV detection. Electrophoresis 24(6):1119–1125. doi:10.1002/elps.200390131

    Article  CAS  Google Scholar 

  41. Van Dyck S, Kaale E, Nováková S, Glatz Z, Hoogmartens J, Van Schepdael A (2003) Advances in capillary electrophoretically mediated microanalysis. Electrophoresis 24(22–23):3868–3878. doi:10.1002/elps.200305636

    Article  Google Scholar 

  42. Hyland K, Bottiglieri T (1992) Measurement of total plasma and cerebrospinal fluid homocysteine by fluorescence following high-performance liquid chromatography and precolumn derivatization with o-phthaldialdehyde. J Chromatogr B Biomed Sci Appl 579(1):55–62. doi:10.1016/0378-4347(92)80362-T

    Article  CAS  Google Scholar 

  43. Tcherkas YV, Denisenko AD (2001) Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 913(1–2):309–313. doi:10.1016/S0021-9673(00)01201-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Federal Institute of Drugs and Medical Devices (BfArM, Bonn, Germany) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Holzgrabe.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühnreich, R., Holzgrabe, U. Indirect Enantioseparation of Amino Acids by CE Using Automated In-Capillary Derivatization with ortho-Phthalaldehyde and N-Acetyl-l-Cysteine. Chromatographia 79, 1013–1022 (2016). https://doi.org/10.1007/s10337-016-3122-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3122-0

Keywords

Navigation