Skip to main content
Log in

A Facile Solid-Phase Micro-Extraction Fiber Based on Pine Needles Biochar Coating for Extraction of Polychlorinated Biphenyls from Water Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this study, a facile route for the preparation of biochar coated fiber via dip method was built. The uniform biochar was produced by thermal decomposition of pine needles under limited or absence of oxygen. The robust adhesion of biochar to the etched stainless steel support was ensured by the viscosity of epoxy resin. The obtained fiber was utilized for headspace solid-phase micro-extraction (HS-SPME) of polychlorinated biphenyls (PCBs) from aqueous solution. The results of orthogonal experiment suggested that the maximum extraction efficiency for the target PCBs compounds was obtained when the extraction temperature, extraction time and the pyrolysis temperature of biochar were 60 °C, 30 min and 400 °C, respectively. Under the optimized conditions, the developed method showed good linearity between 40 and 320 ng L−1 with correlation coefficients (R) in the range of 0.9817–0.9936. The limits of detection (LOD) ranged from 12.3 to 24.3 ng L−1. The reproducibility for fiber-to-fiber obtained on two fibers was in the range of 9.5–20.4 %. The precisions for run-to-run found for 5 extraction times using one fiber in 1 day was less than 27.8 %. The relative standard deviations (RSD) for day-to-day achieved for 5 days was less than 22.4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J, Chem A (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148

    Article  CAS  Google Scholar 

  2. Mehdinia A, Roohi F, Jabbari A, Manafi MR (2011) Self-doped polyaniline as new polyaniline substitute for solid-phase microextraction. Anal Chim Acta 683(2):206–211. doi:10.1016/j.aca.2010.10.031

    Article  CAS  Google Scholar 

  3. Bagheri H, Roostaie A (2012) Aniline–silica nanocomposite as a novel solid phase microextraction fiber coating. J Chromatogr A 1238:22–29. doi:10.1016/j.chroma.2012.03.027

    Article  CAS  Google Scholar 

  4. Canellas E, Vera P, Nerín C (2016) Multiple headspace-solid phase microextraction for the determination of migrants coming from a self-stick label in fresh sausage. Food Chem 197(Part A):24–29. doi:10.1016/j.foodchem.2015.10.039

    Article  CAS  Google Scholar 

  5. Hu G, Zhu Y, Hernandez M, Koutchma T, Shao S (2016) An efficient method for the simultaneous determination of furan, 2-methylfuran and 2-pentylfuran in fruit juices by headspace solid phase microextraction and gas chromatography–flame ionisation detector. Food Chem 192:9–14. doi:10.1016/j.foodchem.2015.06.100

    Article  CAS  Google Scholar 

  6. Olszowy P, Szultka M, Nowaczyk J, Buszewski B (2011) A new way of solid-phase microextraction fibers preparation for selected antibiotic drug determination by HPLC–MS. J Chromatogr B 879(25):2542–2548. doi:10.1016/j.jchromb.2011.07.007

    Article  CAS  Google Scholar 

  7. Mikš-Krajnik M, Yoon Y-J, Ukuku DO, Yuk H-G (2016) Volatile chemical spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition in relation to microbiological and sensory shelf lives. Food Microbiol 53(Part B):182–191. doi:10.1016/j.fm.2015.10.001

    Article  Google Scholar 

  8. Jiménez-Martín E, Gharsallaoui A, Pérez-Palacios T, Ruiz Carrascal J, Antequera Rojas T (2015) Volatile compounds and physicochemical characteristics during storage of microcapsules from different fish oil emulsions. Food Bioprod Process 96:52–64. doi:10.1016/j.fbp.2015.07.005

    Article  Google Scholar 

  9. Kumar A, Gaurav Malik AK, Tewary DK, Singh B (2008) A review on development of solid phase microextraction fibers by sol–gel methods and their applications. Anal Chim Acta 610(1):1–14. doi:10.1016/j.aca.2008.01.028

    Article  CAS  Google Scholar 

  10. Li J-W, Wang Y-L, Yan S, Li X-J, Pan S-Y (2016) Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chem 192:260–267. doi:10.1016/j.foodchem.2015.07.018

    Article  CAS  Google Scholar 

  11. Poole CF, Lenca N (2015) Green sample-preparation methods using room-temperature ionic liquids for the chromatographic analysis of organic compounds. TrAC Trends Anal Chem 71:144–156. doi:10.1016/j.trac.2014.08.018

    Article  CAS  Google Scholar 

  12. Mehdinia A, Bahrami M, Mozaffari S (2015) A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens. J Iran Chem Soc 12(9):1543–1552. doi:10.1007/s13738-015-0626-8

    Article  CAS  Google Scholar 

  13. Wang X, Wang Y, Qin Y, Ding L, Chen Y, Xie F (2015) Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using a graphene-coated solid-phase microextraction fiber prior to GC/MS. Talanta 140:102–108. doi:10.1016/j.talanta.2015.03.030

    Article  CAS  Google Scholar 

  14. Heidari M, Bahrami A, Ghiasvand AR, Shahna FG, Soltanian AR (2012) A novel needle trap device with single wall carbon nanotubes sol–gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air. Talanta 101:314–321. doi:10.1016/j.talanta.2012.09.032

    Article  CAS  Google Scholar 

  15. Shih Y-H, Lirio S, Li C-K, Liu W-L, Huang H-Y (2016) Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent. J Chromatogr A 1428:336–345. doi:10.1016/j.chroma.2015.08.067

    Article  CAS  Google Scholar 

  16. Liu Q, Cheng M, Long Y, Yu M, Wang T, Jiang G (2014) Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction. J Chromatogr A 1325:1–7. doi:10.1016/j.chroma.2013.11.051

    Article  CAS  Google Scholar 

  17. Djozan D, Baheri T, Farshbaf R, Azhari S (2005) Investigation of solid-phase microextraction efficiency using pencil lead fiber for in vitro and in vivo sampling of defensive volatiles from insect’s scent gland. Anal Chim Acta 554(1–2):197–201. doi:10.1016/j.aca.2005.08.049

    Article  CAS  Google Scholar 

  18. Li L, Hongwen S, Ya L, Yuchao L, Zhongyao L, Peng Z, Hongwen S (2011) Review on environmental effects and application of biochar. Environ Chem 30(08):1411–1421

    CAS  Google Scholar 

  19. Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134:232–240. doi:10.1016/j.chemosphere.2015.03.072

    Article  CAS  Google Scholar 

  20. Ahmad M, Rajapaksha AU, Lim JE, Zhang MW, Bolan N, Molan D, Vithanage M, Lee SS, OK YS, (2013) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99(3):203–203

    Google Scholar 

  21. Mohan D, Sarswat A, Yong SO, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160(5):191–202

    Article  CAS  Google Scholar 

  22. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181(11–12):1169–1190

    Article  CAS  Google Scholar 

  23. Yu H, Ho TD, Anderson JL (2013) Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. TrAC Trends Anal Chem 45:219–232. doi:10.1016/j.trac.2012.10.016

    Article  CAS  Google Scholar 

  24. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN (2013) Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage. Talanta 106:200–205. doi:10.1016/j.talanta.2012.12.032

    Article  CAS  Google Scholar 

  25. Xiao CH, Liu ZL, Wang ZY, Wu CY, Han HM (2000) Use of polymeric fullerene as a new coating for solid-phase microextraction. Chromatographia 52(11–12):803–809

    Article  CAS  Google Scholar 

  26. Chen W, Zeng J, Chen J, Huang X, Jiang Y, Wang Y, Chen X (2009) High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating. J Chromatogr A 1216(52):9143–9148. doi:10.1016/j.chroma.2009.07.025

    Article  CAS  Google Scholar 

  27. Eisler R (1986) Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review. US fish and Wildlife Service Patuxent Wildlife Research Center Laurel Md biological Report, Palala Press, pp 84. ISBN-10:1341776689, ISBN-13:9781341776687

  28. Erickson MD, Kaley RG (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res 18(2):135–151

    Article  CAS  Google Scholar 

  29. Roszko M, Jędrzejczak R, Szymczyk K (2014) Polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDEs) and organochlorine pesticides in selected cereals available on the Polish retail market. Sci Total Environ 466–467:136–151. doi:10.1016/j.scitotenv.2013.07.016

    Article  Google Scholar 

  30. Brouwer A, Winneke G (1999) Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 107 suppl 4(8):639–649

  31. Leyla K, Ihsan A, Abdurrahman A (2009) Some organochlorine pesticide residues in fish species in Konya, Turkey. Chemosphere 74(7):885–889

    Article  Google Scholar 

  32. Carpenter DO (2006) Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Rev Environ Health 21(1):1–23

    Article  CAS  Google Scholar 

  33. Kimbrough RD (1987) Human health effects of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs). Annu Rev Pharmacol 27(1):87–111

    Article  CAS  Google Scholar 

  34. Ying Y, Lei L, Zhenya S, Lu D (2012) The research on the surface oxidation modification of activated carbon and Its adsorption mechanisms of organic matter and heavy metal ions. Sci Technol Eng 12(24):6132–6138

    Google Scholar 

  35. Singh SR, Singh AP (2012) Treatment of water containg chromium (VI) using rice husk carbon as a newlow cost adsorbent. Int J Environ Res 6(4):917–924

    CAS  Google Scholar 

  36. Minori U, Wartelle LH, Thomas KK, Fortier CA, IM Lima (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59(6):2501–2510

    Article  Google Scholar 

  37. Durán-Jiménez G, Hernández-Montoya V, Montes-Morán MA, Teutli-León M (2015) New oxygenated carbonaceous adsorbents prepared by combined radiant/microwave heating for the removal of Pb2+ in aqueous solution. J Anal Appl Pyrol 113:599–605. doi:10.1016/j.jaap.2015.04.001

    Article  Google Scholar 

  38. Lou L, Wu B, Wang L, Luo L, Xu X, Hou J, Xun B, Hu B, Chen Y (2011) Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar. Bioresour Technol 102(5):4036–4041. doi:10.1016/j.biortech.2010.12.010

    Article  CAS  Google Scholar 

  39. Baoliang C, Dandan Z, Lizhong Z (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143

    Article  Google Scholar 

  40. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324

    Article  CAS  Google Scholar 

  41. Zhu D, Herbert BE, Schlautman MA, Carraway ER (2004) Characterization of cation–π interactions in aqueous solution using deuterium nuclear magnetic resonance spectroscopy. J Environ Qual 33(1):276–284. doi:10.2134/jeq2004.2760

    Article  CAS  Google Scholar 

  42. Müller S, Totsche KU, Kögel-Knabner I (2007) Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. Eur J Soil Sci 58(4):918–931. doi:10.1111/j.1365-2389.2007.00930.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.-C. Zhao.

Ethics declarations

Conflict of interest

Author Jing Li declares that she has no conflict of interest. Author Rui Chang declares that she has no conflict of interest. Author Fengqin Wang declares that she has no conflict of interest. Author Guang-Chao Zhao declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chang, R., Wang, F.Q. et al. A Facile Solid-Phase Micro-Extraction Fiber Based on Pine Needles Biochar Coating for Extraction of Polychlorinated Biphenyls from Water Samples. Chromatographia 79, 1033–1040 (2016). https://doi.org/10.1007/s10337-016-3118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3118-9

Keywords

Navigation