Skip to main content
Log in

Miniaturization of Instrumental Planar Chromatography with Focus on Mass Spectrometry

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The universal trends to miniaturization and to automation of technologies affect the further development of analytical instrumentation and methodologies. In planar chromatography, these trends are characterized by decreasing dimensions and thickness of the stationary phase and the development of respectively tailored equipment. The miniaturization of instrumental planar chromatography is reflected in the interdisciplinary office chromatography concept, in which achievements in office technologies (print and media technologies) and miniaturized layer developments are integrated. The office chromatography concept stimulates research towards miniaturization and will at last implement a fully online miniaturized system. The use of print techniques is still at its infancy in separation science, whereas printing of materials already became an accepted tool in the life sciences. Commercially, available printers were used for sample application on miniaturized plates and were stepwise modified for a precise and quantitative performance. Further miniaturization attempts led to miniaturized layers with different physical and chromatographic properties. The method transfer to such ultrathin-layer chromatography (UTLC) plates demonstrated the synergetic potential of this instrumental concept. Detection and evaluation tools have to be adjusted and integrated, too. Since the beginning of this millennium, several ionization techniques have been introduced or improved, and paved the way for mass spectrometry (MS) directly from miniaturized surfaces. UTLC was already coupled to MS via several ion source interfaces, such as secondary ionization, matrix-assisted laser desorption and ionization, electrospray ionization, desorption electrospray ionization and direct analysis in real time. However, the hyphenation to targeted, scanning or imaging MS still requires adaptations and methodic efforts to utilize UTLC layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morlock G, Schwack W (2010) Coupling of planar chromatography to mass spectrometry. Trends Anal Chem 29:1157–1171

    Article  CAS  Google Scholar 

  2. Sherma J, Morlock G (2008) Chronology of thin-layer chromatography focusing on instrumental progress. J Planar Chromatogr 21:471–477

    Article  CAS  Google Scholar 

  3. Bernard-Savary P, Poole C (2015) Instrumental platforms for thin-layer chromatography. J Chromatogr A 1421:184–202

    Article  CAS  Google Scholar 

  4. Morlock G (2015) Miniaturized planar chromatography using office peripherals – office chromatography. J Chromatogr A 1382:87–96

    Article  CAS  Google Scholar 

  5. Hauck H, Bund O, Fischer W, Schulz M (2001) Ultra-thin layer chromatography (UTLC) – a new dimension in thin-layer chromatography. J Planar Chromatogr 14:234–236

    Article  CAS  Google Scholar 

  6. Frolova A, Konovalova O, Loginova L, Bulgakova A, Boichenko A (2011) Thin-layer chromatographic plates with monolithic layer of silica: production, physical-chemical characteristics, separation capabilities. J Sep Sci 34:2352–2361

    CAS  Google Scholar 

  7. Lv Y, Lin Z, Tan T, Svec F (2013) Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection. J Chromatogr A 1316:154–159

    Article  CAS  Google Scholar 

  8. Clark J, Olesik S (2009) Technique for ultrathin layer chromatography using an electrospun, nanofibrous stationary phase. Anal Chem 81:4121–4129

    Article  CAS  Google Scholar 

  9. Clark J, Olesik S (2010) Electrospun glassy carbon ultra-thin layer chromatography devices. J Chromatogr A 1217:4655–4662

    Article  CAS  Google Scholar 

  10. Kampalanonwat P, Supaphol P, Morlock G (2013) Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds. J Chromatogr A 1299:110–117

    Article  CAS  Google Scholar 

  11. Bezuidenhout L, Brett M (2008) Ultrathin layer chromatography on nanostructured thin films. J Chromatogr A 1183:179–185

    Article  CAS  Google Scholar 

  12. Jim S, Taschuk M, Morlock G, Bezuidenhout L, Schwack W, Brett M (2010) Engineered anisotropic microstructures for ultrathin-layer chromatography. Anal Chem 82:5349–5356

    Article  CAS  Google Scholar 

  13. Oko A, Jim S, Taschuk M, Brett M (2011) Analyte migration in anisotropic nanostructured ultrathin-layer chromatography media. J Chromatogr A 1218:2661–2667

    Article  CAS  Google Scholar 

  14. Song J, Jensen D, Hutchison D, Turner B, Wood T, Dadson A, Vail M, Linford M, Vanfleet R, Davis R (2011) Carbon-nanotube-templated microfabrication of porous silicon-carbon materials with application to chemical separations. Adv Funct Mater 21:1132–1139

    Article  CAS  Google Scholar 

  15. Jensen D, Kanyal S, Madaan N, Hancock J, Dadson A, Vail M, Vanfleet R, Shutthanandan V, Zhu Z, Engelhard M, Linford M (2013) Multi-instrument characterization of the surfaces and materials in microfabricated, carbon nanotube-templated thin layer chromatography plates. An analogy to ‘The blind men and the elephant’. Surf Interface Anal 45:1273–1282

    Article  CAS  Google Scholar 

  16. Jensen D, Kanyal S, Madaan N, Miles A, Davis R, Vanfleet R, Vail M, Dadson A, Linford M (2013) Ozone priming of patterned carbon nanotube forests for subsequent atomic layer deposition-like deposition of SiO2 for the preparation of microfabricated thin layer chromatography plates. J Vac Sci Technol, B 31:031803

    Article  Google Scholar 

  17. Kanyal S, Häbe T, Cushman CV, Dhunna M, Farnsworth P, Morlock G, Linford M (2015) Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates. J Chromatogr A 1404:115–123

    Article  CAS  Google Scholar 

  18. Morlock G, Oellig C, Bezuidenhout L, Brett M, Schwack W (2010) Miniaturized planar chromatography using office peripherals. Anal Chem 82:2940–2946

    Article  CAS  Google Scholar 

  19. Nyiredy Szabolcs (1991) Thin layer analytic or preparative chromatography comprises depositing sample, solvent and reagents onto stationary phase, using controlled liquid jet. Patent No. CH692008 (A5)

  20. Prosek M, Pukl M, Smidovnik A, Medja A (1989) Automation of thin layer chromatography with a laboratory robot. J Planar Chromatogr 2:244–246

    CAS  Google Scholar 

  21. Murphy S, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  Google Scholar 

  22. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson J, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    Article  CAS  Google Scholar 

  23. Cui X, Breitenkamp K, Finn M, Lotz M, D’Lima D (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18:1304–1312

    Article  CAS  Google Scholar 

  24. Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–430

    Article  CAS  Google Scholar 

  25. Sia S, Whitesides G (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    Article  CAS  Google Scholar 

  26. Kirchert S, Wang Z, Taschuk M, Jim S, Brett M, Morlock G (2013) Inkjet application, chromatography, and mass spectrometry of sugars on nanostructured thin films. Anal Bioanal Chem 405:7195–7203

    Article  CAS  Google Scholar 

  27. Wannenmacher J, Jim S, Taschuk M, Brett M, Morlock G (2013) Ultrathin-layer chromatography on SiO2, Al2O3, TiO2, and ZrO2 nanostructured thin films. J Chromatogr A 1318:234–243

    Article  CAS  Google Scholar 

  28. Häbe T, Morlock G (2015) Office chromatography: precise printing of sample solutions on miniaturized thin-layer phases and utilization for scanning direct analysis in real time mass spectrometry. J Chromatogr A 1413:127–134

    Article  Google Scholar 

  29. Mustoe S, McCrossen S (2001) TLC image capture and analysis by use of a prototype device for visualizing fluorescence. J Planar Chromatogr 14:252–255

    Article  CAS  Google Scholar 

  30. Abbaspour A, Mirahmadi E, Khajehzadeh A (2010) Disposable sensor for quantitative determination of hydrazine in water and biological sample. Anal Methods 2:349–353

    Article  CAS  Google Scholar 

  31. Johnsson R, Träff G, Sundén M, Ellervik U (2007) Evaluation of quantitative thin layer chromatography using staining reagents. J Chromatogr A 1164:298–305

    Article  CAS  Google Scholar 

  32. Halkina T, Sherma J (2006) Use of the chromimage flatbed scanner for quantification of high-performance thin layer chromatograms in the visible and fluorescence-quenching modes. Acta Chromatogr 17:250–260

    CAS  Google Scholar 

  33. Soponar F, Moţ A, Sârbu C (2008) Quantitative determination of some food dyes using digital processing of images obtained by thin-layer chromatography. J Chromatogr A 1188:295–300

    Article  CAS  Google Scholar 

  34. Stroka J, Peschel T, Tittelbach G, Weldner G, Otterdijk R, Anklam E (2001) Modification of an office scanner for the determination of aflatoxins after TLC separation. J Planar Chromatogr 14:109–112

    CAS  Google Scholar 

  35. Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  36. Vovk I, Popović G, Simonovska B, Albreht A, Agbaba D (2011) Ultra-thin-layer chromatography mass spectrometry and thin-layer chromatography mass spectrometry of single peptides of angiotensin-converting enzyme inhibitors. J Chromatogr A 1218:3089–3094

    Article  CAS  Google Scholar 

  37. Jim S, Foroughi-Abari A, Krause K, Li P, Kupsta M, Taschuk M, Cadien K, Brett M (2013) Ultrathin-layer chromatography nanostructures modified by atomic layer deposition. J Chromatogr A 1299:118–125

    Article  CAS  Google Scholar 

  38. Häbe T, Morlock G (2015) Challenges in quantitative high-performance thin-layer chromatography – part 1: influence of densitometric settings on the result. J Planar Chromatogr 28:426–435

    Article  Google Scholar 

  39. Salo P, Salomies H, Harju K, Ketola R, Kotiaho T, Yli-Kauhaluoma J, Kostiainen R (2005) Analysis of small molecules by ultra thin-layer chromatography-atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 16:906–915

    Article  CAS  Google Scholar 

  40. Salo P, Vilmunen S, Salomies H, Ketola R, Kostiainen R (2007) Two-dimensional ultra-thin-layer chromatography and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry in bioanalysis. Anal Chem 79:2101–2108

    Article  CAS  Google Scholar 

  41. Talian I, Orinák A, Preisler J, Heile A, Onofrejová L, Kaniansky D, Arlinghaus H (2007) Comparative TOF-SIMS and MALDI TOF-MS analysis on different chromatographic planar substrates. J Sep Sci 30:2570–2582

    Article  CAS  Google Scholar 

  42. Urbanova I, Svec F (2011) Monolithic polymer layer with gradient of hydrophobicity for separation of peptides using two-dimensional thin layer chromatography and MALDI-TOF-MS detection. J Sep Sci 34:2345–2351

    CAS  Google Scholar 

  43. Bakry R, Bonn G, Mair D, Svec F (2007) Monolithic porous polymer layer for the separation of peptides and proteins using thin-layer chromatography coupled with MALDI-TOF-MS. Anal Chem 79:486–493

    Article  CAS  Google Scholar 

  44. Zhang Z, Ratnayaka S, Wirth M (2011) Protein UTLC-MALDI-MS using thin films of submicrometer silica particles. J Chromatogr A 1218:7196–7202

    Article  CAS  Google Scholar 

  45. Luftmann H (2004) A simple device for the extraction of TLC spots: direct coupling with an electrospray mass spectrometer. Anal Bioanal Chem 378:964–968

    Article  CAS  Google Scholar 

  46. Kauppila T, Talaty N, Salo P, Kotiaho T, Kostiainen R, Cooks R (2006) New surfaces for desorption electrospray ionization mass spectrometry: porous silicon and ultra-thin layer chromatography plates. Rapid Commun Mass Spectrom 20:2143–2150

    Article  CAS  Google Scholar 

  47. Cody R, Laramée J, Durst H (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    Article  CAS  Google Scholar 

  48. Morlock G, Schwack W (2006) Determination of isopropylthioxanthone (ITX) in milk, yoghurt and fat by HPTLC-FLD, HPTLC-ESI/MS and HPTLC-DART/MS. Anal Bioanal Chem 385:586–595

    Article  CAS  Google Scholar 

  49. Chernetsova E, Morlock G, Revelsky I (2011) DART mass spectrometry and its applications in chemical analysis. Russ Chem Rev 80:235–255

    Article  CAS  Google Scholar 

  50. Chernetsova E, Morlock G (2011) Determination of drugs and drug-like compounds in different samples with direct analysis in real time mass spectrometry. Mass Spectrom Rev 30:875–883

    CAS  Google Scholar 

  51. Häbe T, Morlock G (2015) Quantitative surface scanning by direct analysis in real time mass spectrometry. Rapid Commun Mass Spectrom 29:474–484

    Article  Google Scholar 

  52. Häbe T, Morlock G (2016) Improved desorption/ionization and ion transmission in surface scanning by direct analysis in real time mass spectrometry. Rapid Commun Mass Spectrom 30:321–332

    Article  Google Scholar 

  53. Mennickent S, de Diego M, Vega M (2013) Ultrathin-layer chromatography (UTLC). Chromatographia 76:1233–1238

    Article  CAS  Google Scholar 

  54. Patel R, Gopani M, Patel M (2013) UTLC: an advanced technique in planar chromatography. Chromatographia 76:1225–1231

    Article  CAS  Google Scholar 

  55. Häbe T, Morlock G (2015) In: Kowalska T, Sajewicz M, Sherma J (eds) Planar chromatography—mass spectrometry, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  56. Morlock G, Stiefel C, Schwack W (2007) Efficacy of a modified printer for application of reagents in planar chromatography. J Liq Chromatogr Relat Technol 30:2171–2184

    Article  CAS  Google Scholar 

  57. Oriňák A, Vering G, Arlinghaus H, Andersson J, Halas L, Oriňáková R (2005) New approaches to coupling TLC with TOF-SIMS. JPC Mod TLC 18:44–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertrud E. Morlock.

Ethics declarations

Conflict of Interest

Both authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häbe, T.T., Morlock, G.E. Miniaturization of Instrumental Planar Chromatography with Focus on Mass Spectrometry. Chromatographia 79, 797–810 (2016). https://doi.org/10.1007/s10337-016-3113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3113-1

Keywords

Navigation