, Volume 79, Issue 17–18, pp 1061–1068 | Cite as

Metabolite Profiling to Monitor Organochlorine Pesticide Exposure in HepG2 Cell Culture

  • Martha Zuluaga
  • Jhon Jairo Melchor
  • Fredy Alexander Tabares-Villa
  • Gonzalo Taborda
  • Juan Carlos Sepúlveda-Arias
Part of the following topical collections:
  1. 5th Latin American Pesticide Residue Workshop


Gas chromatography coupled with time of flight mass spectrometry (GC/MS-TOF) was used to profile endogenous metabolites in HepG2 cell cultures to assess the metabolic changes induced by exposure to different organochlorine pesticides, their mixtures and controls (endosulfan, lindane, DDT and aldrin). Cells were cultured in DMEM with Glutamax at 37 °C with 5 % CO2 for 72 h and then exposed to each pesticide, pesticide mixture or DMSO (as a control) for 24 h, and finally, endogenous metabolites were extracted and analyzed using GC/MS-TOF. The experiment was repeated six times under the same cell passage and culture conditions. PCA, PLS-DA and ROC were performed to analyze the GC/MS-TOF data and identify potential biomarkers. Thirty-five explanatory metabolites were found in both PCA and PLS-DA models, where Q 2 was 0.86 and R 2 was 0.98. Univariate and multivariate ROC showed potential biomarkers for each treatment, suggesting a general toxic mechanism for organochlorine pesticides that is specific for each type of compound. These results confirmed the effect of OCPs in sugar and amino acid metabolism that are linked with the function of cytochrome P450 in reductive dechlorination and oxidative stress.


Organochlorine Pesticides Metabolite profiling Biomarkers Metabolomics 



To Becas Generación de Bicentenario conv. 511 from Colciencias (Grant to Martha Zuluaga). To Programa de Jóvenes Investigadores e Innovadores from Colciencias and Universidad Tecnológica de Pereira (Grant to Melchor JJ and Tabares-Villa FA, contracts 5348/2013 and 5826/2013, respectively) and the West Coast Metabolomics Center for receiving Martha Zuluaga as a visitor scholar during 2014.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10337_2016_3031_MOESM1_ESM.pdf (714 kb)
Supplementary Figure 1 ROC of each treatment Vs control and PLS-DA features. a Endosulfan Vs Control ROC. b Endosulfan Biomarkers. c Aldrin Vs Control ROC d Aldrin Biomarkers e DDT Vs control ROC. f DDT Biomarkers g Lindane Vs Control ROC h Lindane Biomarkers i Mixture of pesticides Vs Control ROC j Mixture of pesticides Biomarkers (PDF 713 kb)


  1. 1.
    Longnecker MP, Rogan WJ, Lucier G (1997) The human health efects of DDT (Dichlorodiphenyl-Trichloroetane) and PCBS (Polichlorinated Biphenyls) and an overview of organochlorines in public health. Annu Rev Public Heal 18:211–244CrossRefGoogle Scholar
  2. 2.
    Moses V, Peter JV (2010) Acute intentional toxicity: endosulfan and other organochlorines. Clin Toxicol 48(6):539–544. doi: 10.3109/15563650.2010.494610 CrossRefGoogle Scholar
  3. 3.
    Bonvallot N, Tremblay-Franco M, Chevrier C, Canlet C, Debrauwer L, Cravedi J-P, Cordier S (2014) Potential input from metabolomics for exploring and understanding the links between environment and health. J Toxicol Environ Health B Crit Rev 17(1):21–44. doi: 10.1080/10937404.2013.860318 CrossRefGoogle Scholar
  4. 4.
    Van Vliet E, Morath S, Eskes C, Linge J, Rappsilber J, Honegger P, Coecke S (2008) A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 29(1):1–12. doi: 10.1016/j.neuro.2007.09.007 CrossRefGoogle Scholar
  5. 5.
    Yuk J, Simpson MJ, Simpson AJ (2013) 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. Environ Pollut 175:35–44. doi: 10.1016/j.envpol.2012.12.007 CrossRefGoogle Scholar
  6. 6.
    Yuk J, Simpson MJ, Simpson AJ (2011) 1-D and 2-D NMR metabolomics of earthworm responses to sub-lethal trifluralin and endosulfan exposure. Environ Chem 8(3):281. doi: 10.1071/EN11033 CrossRefGoogle Scholar
  7. 7.
    Li M, Wang J, Lu Z, Wei D, Yang M, Kong L (2013) NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus). Aquat Toxicol 146:82–92. doi: 10.1016/j.aquatox.2013.10.024 CrossRefGoogle Scholar
  8. 8.
    Benarbia MEA, Macherel D, Faure S, Jacques C, Andriantsitohaina R, Malthièry Y (2013) Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder. Toxicol Appl Pharmacol 272(2):325–334. doi: 10.1016/j.taap.2013.06.006 CrossRefGoogle Scholar
  9. 9.
    Kim K, Kim S, Um S, Chung M, Oh J, Jung S, Moon H (2009) Metabolomics approach to risk assessment: methoxyclor exposure in rats. J Toxicol Environ Health A 72:1352–1368CrossRefGoogle Scholar
  10. 10.
    Wang H-P, Liang Y-J, Long D-X, Chen J-X, Hou W-Y, Wu Y-J (2009) Metabolic profiles of serum from rats after subchronic exposure to chlorpyrifos and carbaryl. Chem Res Toxicol 22(6):1026–1033. doi: 10.1021/tx8004746 CrossRefGoogle Scholar
  11. 11.
    Huang Q, Huang H-Q (2012) Alterations of protein profile in zebrafish liver cells exposed to methyl parathion: a membrane proteomics approach. Chemosphere 87(1):68–76. doi: 10.1016/j.chemosphere.2011.11.061 CrossRefGoogle Scholar
  12. 12.
    Dietmair S, Timmins N, Gray P, Nielsen L, Krömer J (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404(2):155–164. doi: 10.1016/j.ab.2010.04.031 CrossRefGoogle Scholar
  13. 13.
    Cuperlović-Culf M, Barnett D, Culf AS, Chute I (2010) Cell culture metabolomics: applications and future directions. Drug Discov Today 15(15–16):610–621. doi: 10.1016/j.drudis.2010.06.012 CrossRefGoogle Scholar
  14. 14.
    Abass K, Reponen P, Mattila S, Rautio A, Pelkonen O (2014) Comparative metabolism of benfuracarb in in vitro mammalian hepatic microsomes model and its implications for chemical risk assessment. Toxicol Lett 224(2):290–299. doi: 10.1016/j.toxlet.2013.08.009 CrossRefGoogle Scholar
  15. 15.
    Ruiz-aracama A, Peijnenburg A, Kleinjans J, Jennen D, Delft J Van, Hellfrisch C, Lommen A (2011) An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genom 12(251):1–19Google Scholar
  16. 16.
    De S, Ghosh S, Chatterjee R, Chen Y-Q, Moses L, Kesari A, Dutta SK (2010) PCB congener specific oxidative stress response by microarray analysis using human liver cell line. Environ Int 36(8):907–917. doi: 10.1016/j.envint.2010.05.011 CrossRefGoogle Scholar
  17. 17.
    Sharma H, Zhang P, Barber DS, Liu B (2010) Organochlorine pesticides dieldrin and lindane induce cooperative toxicity in dopaminergic neurons: role of oxidative stress. Neurotoxicology 31(2):215–222. doi: 10.1016/j.neuro.2009.12.007 CrossRefGoogle Scholar
  18. 18.
    Gülden M, Mörchel S, Tahan S, Seibert H (2002) Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro. J Toxicol 175(1–3):201–213. doi: 10.1016/S0300-483X(02)00085-9 CrossRefGoogle Scholar
  19. 19.
    Song MO, Lee CH, Yang HO, Freedman JH (2012) Endosulfan upregulates AP-1 binding and ARE-mediated transcription via ERK1/2 and p38 activation in HepG2 cells. J Toxicol 292(1):23–32. doi: 10.1016/j.tox.2011.11.013 CrossRefGoogle Scholar
  20. 20.
    Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH (2010) Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PloS One 5(12):e15234. doi: 10.1371/journal.pone.0015234 CrossRefGoogle Scholar
  21. 21.
    Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee DY, Lu Y, Nikolau B (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53(4):691–704. doi: 10.1111/j.1365-313X.2007.03387.x CrossRefGoogle Scholar
  22. 22.
    Xia J, Wishart DS (2011) Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr Protoc Bioinform 14(10):1–48. doi: 10.1002/0471250953.bi1410s34 Google Scholar
  23. 23.
    Van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom 7(1):1–15. doi: 10.1186/1471-2164-7-142 CrossRefGoogle Scholar
  24. 24.
    Atherton HJ, Jones OAH, Malik S, Miska EA, Griffin JL (2008) A comparative metabolomic study of NHR-49 in Caenorhabditis elegans and PPAR-alpha in the mouse. FEBS Lett 582(12):1661–1666. doi: 10.1016/j.febslet.2008.04.020 CrossRefGoogle Scholar
  25. 25.
    Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri MAA (2007) N-Acetylaspartate in the CNS: from Neurodiagnostics to Neurobiology. Prog Neurobiol 81(2):89–131. doi: 10.1016/j.pneurobio.2006.12.003 CrossRefGoogle Scholar
  26. 26.
    Redmond HP, Stapleton PP, Neary P, Bouchier-Hayes D (1998) Immunonutrition: the role of taurine. Nutrition 14(7–8):599–604CrossRefGoogle Scholar
  27. 27.
    Lu C, Wang Y, Sheng Z, Liu G, Fu Z, Zhao J, Peng S (2010) NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats. Toxicol Appl Pharmacol 248(3):178–184. doi: 10.1016/j.taap.2010.07.020 CrossRefGoogle Scholar
  28. 28.
    Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77(2):408–415CrossRefGoogle Scholar
  29. 29.
    Karami-Mohajeri S, Abdollahi M (2011) Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30(9):1119–1140. doi: 10.1177/0960327110388959 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martha Zuluaga
    • 1
  • Jhon Jairo Melchor
    • 2
  • Fredy Alexander Tabares-Villa
    • 2
  • Gonzalo Taborda
    • 1
  • Juan Carlos Sepúlveda-Arias
    • 2
  1. 1.Grupo de Investigación en Cromatografía y Técnicas Afines, Departamento de QuímicaFacultad de Ciencias Exactas y Naturales, Universidad de CaldasManizalesColombia
  2. 2.Grupo Infección e Inmunidad, Departamento de Ciencias BásicasFacultad de Ciencias de la Salud, Universidad Tecnológica de PereiraPereiraColombia

Personalised recommendations