Skip to main content
Log in

Analyses of Nonsteroidal Anti-inflammatory Drugs in Human Plasma Using Dispersive Nano Solid-Phase Extraction and High-Performance Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Iron nanoparticles were synthesized by green technology. These were functionalized with 1-butyl-3-methylimidazolium bromide (ionic liquid) to enhance specificity and selectivity. Fourier transform infrared spectroscopy, energy dispersive X-ray fluorescence, X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used for characterization. 1-Butyl-3-methylimidazolium bromide-functionalized iron nanoparticles (BMIF-INPs) were applied in nano dispersive solid-phase extraction for the extraction of nonsteroidal anti-inflammatory drugs (NSAIDs) from the plasma prior. The different extraction parameters such as type and amount of sorbents, agitation time, pH, desorbing solvents, desorbing volume, and desorption times were optimized. Optimum conditions were 1.5 mg mL−1 of BMIF-INP sorbent, 20 min of agitation time, pH of 5.0, acetonitrile + 0.1 % acetic acid desorbing solvent, 600 µL of desorbing volume and 2 min of desorbing time. The percentage recoveries of all the six NSAIDs ranged from 87.4 to 94.98 %. High-performance liquid chromatography was developed using a pentafluorophenyl column (100 × 4.6 mm; 2.6 µm) and water–acetonitrile–acetic acid (70:30, v/v) of pH 3.0 with acetic acid as the mobile phase. The flow rate was 1.0 mL min−1 with detection at 240 nm. The values of k, α and R s ranged from 0.83 to 19.0, 1.16 to 6.13 and 1.0 to 5.76, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economical and reproducible. These methods have good applications and may be used for analyzing these drugs in biological, environmental and industrial matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2011) World report on disability. WHO. ISBN 978 92 4 068637 3 (Daisy)

  2. American Gastroenterological Association. Study Shows Long-term Use Of NSAIDs Causes Severe Intestinal Damage. ScienceDaily. ScienceDaily, 16 January 2005. http://www.sciencedaily.com/releases/2005/01/050111123706.htm

  3. Rochon PA, Gurwitz JH, Simms RW, Fortin PR, Felson DT, Minaker KL, Chalmers TC (1994) A study of manufacturer-supported trials of nonsteroidal anti-inflammatory drugs in the treatment of arthritis. Arch Intern Med 154:157–163

    Article  CAS  Google Scholar 

  4. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC (1992) The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol 42:121–125

    Article  CAS  Google Scholar 

  5. Anderson JA, Lee P, Webb J, Buchanan WW (1974) Evaluation of the therapeutic potential of ketoprofen in rheumatoid arthritis. Curr Med Res Opin 2:189–197

    Article  CAS  Google Scholar 

  6. Smolinske SC, Hall AH, Vandenberg SA, Spoerke DG, McBride PV (1990) Toxic effects of nonsteroidal anti-inflammatory drugs in overdose. Drug Saf 5:252–274

    Article  CAS  Google Scholar 

  7. Higuchi K, Umegaki E, Watanabe T, Yoda Y, Morita E, Murano M, Tokioka S, Arakawa T (2009) Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol 44:879–888

    Article  Google Scholar 

  8. Whelton A (1999) Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med 106:13S–24S

    Article  CAS  Google Scholar 

  9. Antman EM, Bennett JS, Daugherty A, Furberg C, Roberts H, Taubert KA (2007) Use of nonsteroidal Anti-inflammatory drugs an update for clinicians: a scientific statement from the American Heart Association. Circulation 115:1634–1642

    Article  Google Scholar 

  10. Singh G (1998) Recent considerations in nonsteroidal anti-inflammatory drug gastropathy. Am J Med 105:31S–38S

    Article  CAS  Google Scholar 

  11. Ali I, Aboul-Enein HY, Gupta VK (2009) Nano chromatography and capillary electrophoresis, pharmaceutical and environmental analyses. Wiley, Hoboken

    Google Scholar 

  12. Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393

    Article  Google Scholar 

  13. Lin AYC, Tsai YT, Yu TH, Wang XH, Lin CF (2011) Occurrence and fate of pharmaceuticals and personal care products in Taiwan’s aquatic environment. Desalin Water Treat 32:57–64

    Article  CAS  Google Scholar 

  14. Ali I, Hussain I, Saleem K, Aboul-Enein HY, Bazylak G (2008) Supramolecular chiro-biomedical assays and enantioselective HPLC analyses for evaluation of profens as non-steroidal anti-inflammatory drugs, potential anti cancer agents and common xenobiotic. Curr Drug Discov Technol 5:105–120

    Article  CAS  Google Scholar 

  15. Ali I, Hussain I, Saleem K, Aboul-Enein HY (2012) Enantiomeric resolution of ibuprofen and flurbiprofen in human plasma by SPE-chiral HPLC methods. Combin Chem High Throughput Screen 15:509–514

    Article  CAS  Google Scholar 

  16. Ali I, Singh P, Aboul-Enein HY, Sharma B (2009) Chiral analyses of ibuprofen residues in water and sediment. Anal Lett 42:1747–1760

    Article  CAS  Google Scholar 

  17. Caro E, Marc RM, Cormack PAG, Sherrington DC, Borrull F (2005) Selective enrichment of anti-inflammatory drugs from river water samples by solid-phase extraction with a molecularly imprinted polymer. J Sep Sci 28:2080–2085

    Article  CAS  Google Scholar 

  18. Debska J, Kot-Wasik A, Namiesnik J (2005) Determination of nonsteroidal Anti-inflammatory drugs in water samples using liquid chromatography coupled with diode-array detector and mass spectrometry. J Sep Sci 28:2419–2426

    Article  CAS  Google Scholar 

  19. Ppadoyannis IN (1990) HPLC in clinical chemistry, vol 54. Marcel Dekker Inc., New York

    Google Scholar 

  20. Banaker UV (ed) (1992) Pharmaceutical dissolution testing, 1st edn. Marcel Dekker Inc., New York

    Google Scholar 

  21. Starek M, Dąbrowska M (2012) Chromatographic techniques in analysis of cyclooxygenase-2 inhibitors in drugs and biological samples. Cent Eur J Chem 10:711–730

    Article  CAS  Google Scholar 

  22. Aboul-Enein HY, Ali I (2003) Chiral separations by liquid chromatography and related technologies. Marcel Dekker, Inc., New York, USA, ISBN:0-8247-4014-9

    Book  Google Scholar 

  23. Grob RL (1983) Chromatographic analysis of the environment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  24. Gooding KM, Regnier FE (1990) HPLC of biological macromolecules methods and applications. Chromatographic science series, vol 51. Marcel Dekker, New York

    Google Scholar 

  25. Farrar H, Letzig L, Gill M (2002) Validation of a liquid chromatographic method for the determination of ibuprofen in human plasma. J Chromatogr B 780:341–348

    Article  CAS  Google Scholar 

  26. Suenami K, Lim LW, Takeuchi T, Sasajima Y, Sato K, Takekoshi Y, Kanno S (2006) Rapid and simultaneous determination of nonsteroidal anti-inflammatory drugs in human plasma by LC–MS with solid-phase extraction. Anal Bioanal Chem 384:1501–1505

    Article  CAS  Google Scholar 

  27. Gallo P, Fabbrocino S, Vinci F, Fiori M, Danese V, Nasi A, Serpe L (2006) Multi-residue determination of non-steroidal anti-inflammatory drug residues in animal serum and plasma by HPLC and photo-diode array detection. J Chromatogr Sci 44:585–590

    Article  CAS  Google Scholar 

  28. González-Barreiro C, Lores M, Casais MC, Cela R (2003) Simultaneous determination of neutral and acidic pharmaceuticals in wastewater by high-performance liquid chromatography-post-column photochemically induced fluorimetry. J Chromatogr A 993:29–37

    Article  Google Scholar 

  29. Debska J, Kot-Wasik A, Namiesnik J (2005) Determination of nonsteroidal Anti-inflammatory drugs in water samples using liquid chromatography coupled with diode-array detector and mass spectrometry. J Sep Sci 28:2419–2426

    Article  CAS  Google Scholar 

  30. Pedrouzo M, Reverté S, Borrull F, Pocurull E, Marcé RM (2007) Pharmaceutical determination in surface and waste waters using high performance liquid chromatography-(electrospray)–mass spectrometry. J Sep Sci 30:297–303

    Article  CAS  Google Scholar 

  31. Mikami E, Goto T, Ohno T, Matsumoto H, Nishida M (2000) Simultaneous analysis of naproxen, nabumetone and its major metabolite 6-methoxy-2-naphthylacetic acid in pharmaceutical and human urine by high-performance liquid chromatography. J Pharm Biomed Anal 23:917–925

    Article  CAS  Google Scholar 

  32. Kamaruzaman S, Sanagi MM, Endud S, Ibrahim WAW, Yahaya N (2013) MCM-41 solid phase membrane tip extraction combined with liquid chromatography for the determination of non-steroidal anti-inflammatory drugs in human urine. J Chromatogr B 940:59–65

    Article  CAS  Google Scholar 

  33. Sharifabadi MK, Tehrani MS, Husain SW, Mehdinia A, Azar PA (2014) Determination of residual non-steroidal anti-inflammatory drugs in aqueous sample using magnetic nanoparticles modified with cetyltrimethylammonium bromide by high performance liquid chromatography. Sci World J 2014:1–8

    Google Scholar 

  34. Cazes J (2001) Encyclopedia of chromatography. Marcel Dekker Inc, New York

    Google Scholar 

  35. Ali I, Kulsum U, AL-Othman ZA, Al-Warthan A, Saleem K (2016) Advances in analyses of profens in biological and environmental samples by liquid chromatography. Cur Pharm Anal 12. doi:10.2174/1573412912999151120155536

  36. Ali I, Gupta VK, Aboul-Enein HY, Hussain A (2008) Hyphenation in sample preparation: advancement from the micro to the nano world. J Sep Sci 31:2040–2053

    Article  CAS  Google Scholar 

  37. Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853

    Article  CAS  Google Scholar 

  38. Asgharinezhad AA, Ebrahimzadeh H, Mirbabaei F, Mollazadeh N, Shekari N (2014) Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal Chim Acta 844:80–89

    Article  CAS  Google Scholar 

  39. Mahpishanian S, Sereshti H (2014) Graphene oxide-based dispersive micro-solid phase extraction for separation and preconcentration of nicotine from biological and environmental water samples followed by gas chromatography-flame ionization detection. Talanta 130:71–77

    Article  CAS  Google Scholar 

  40. Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G (2013) Application of nanomaterials in sample preparation. J Chromatogr A 1300:2–16

    Article  CAS  Google Scholar 

  41. Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Anal Chem 59:26–41

    Article  CAS  Google Scholar 

  42. Lucena R, Simonet BM, Cárdenas S, Valcárcel M (2011) Potential of nanoparticles in sample preparation. J Chromatogr A 1218:620–637

    Article  CAS  Google Scholar 

  43. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta Mol Biomol Spectrosc 130:295–301

    Article  CAS  Google Scholar 

  44. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  45. Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  46. Ali I, AL-Othman ZA, Al-Warthan AA (2016) Sorption, Kinetic and Thermodynamics Studies of Atrazine Hericide Removal from water using Iron nanocomposite material. Int J Environ Sci Technol. doi:10.1007/s13762-015-0919-6

    Google Scholar 

  47. Ali I, AL-Othman ZA, Al-Warthan A (2015) Removal of secbumeton herbicide from water on composite nano adsorbent. Desal Water Treat. doi:10.1080/19443994.2015.1041164

    Google Scholar 

  48. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  49. Dethlefs KM, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    Article  Google Scholar 

  50. Martinez CR, Iverson BL (2012) Rethinking the term “pi-stacking”. Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  51. Dougherty DA (2007) Cation–π interactions involving aromatic amino acids. J Nutr 137:1504S–1508S

    CAS  Google Scholar 

  52. Scrutton NS, Raine ARC (1996) Cation–π bonding and amino–aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 319:1–8

    Article  CAS  Google Scholar 

  53. Gao J, Chou LW, Auerbach A (1993) The nature of cation–pi binding: interactions between tetramethylammoniumion and benzene in aqueous solution. Biophys J 65:43–47

    Article  CAS  Google Scholar 

  54. Mohan N, Vijayalakshmi KP, Koga N, Suresh CH (2010) Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods. J Comput Chem 31:2874–2882

    CAS  Google Scholar 

  55. Imai YN, Inoue Y, Nakanishi I, Kitaura K (2009) Amide–π-interactions between formamide and benzene. J Comput Chem 30:2267–2276

    CAS  Google Scholar 

  56. Ottiger P, Pfaffen C, Leist R, Leutwyler S (2009) Strong N–H···π hydrogen bonding in amide–benzene interactions. J Phys Chem B 113:2937–2943

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding to this Prolific Research Group (PRG-1436-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Ali.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Kulsum, U., AL-Othman, Z.A. et al. Analyses of Nonsteroidal Anti-inflammatory Drugs in Human Plasma Using Dispersive Nano Solid-Phase Extraction and High-Performance Liquid Chromatography. Chromatographia 79, 145–157 (2016). https://doi.org/10.1007/s10337-015-3020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-3020-x

Keywords

Navigation