Skip to main content

Advertisement

Log in

A Novel 2-Acrylamide-6-Methoxybenzothiazole Fabricated Molecularly Imprinted Polymers for Direct Fluorescent Sensing of Alachlor

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this work, a fluorescent, molecularly imprinted polymer sensor was developed for the rapid and direct sensing of trace alachlor. 2-Acrylamide-6-methoxybenzothiazole, synthesized via a simple one-step reaction with 2-amino-6-methoxybenzothiazole and acryloyl chloride, was used as both fluorescent reporter and functional monomer to prepare an alachlor-imprinted polymer. In this way, binding events produced physically detectable fluorescence signals, and the alachlor could therefore be quantified directly without any further treatment. Binding experiments demonstrated that the fluorescence intensity of the resultant polymer decreased linearly with increases in the concentration of alachlor, in the range of 1–150 μM, and with a detection limit of 0.5 μM. In addition, the fluorescent sensor exhibited significant selectivity toward alachlor over its potentially competing molecules of S-metolachlor, cyanazine, and cypermethrin. Finally, the proposed method was successfully applied for the determination of trace alachlor in corn seed samples, with excellent recoveries ranging from 95.58 to 103.83 %. The developed method shows great potential for the determination of residual alachlor in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wang C, Liu C (2014) J Environ Sci 26:1332–1339

    Article  CAS  Google Scholar 

  2. Lauga B, Girardin N, Karama S, Le Menach K, Budzinski H, Duran R (2013) Environ Sci Pollut Res 20:1089–1105

    Article  CAS  Google Scholar 

  3. Lee WJ, Hoppin JA, Blair A, Lubin JH, Dosemeci M, Sandler DP, Alavanja MCR (2004) Am J Epidemiol 159:373–380

    Article  Google Scholar 

  4. Dearfield KL, McCarroll NE, Protzel A, Stack HF, Jackson MA, Waters MD (1999) Mutat Res 443:183–221

    Article  CAS  Google Scholar 

  5. Osano O, Admiraal W, Klamer HJC, Pastor D, Bleeker EAJ (2002) Environ Pollut 119:195–202

    Article  CAS  Google Scholar 

  6. Holden LR, Graham JA (1992) Environ Sci Technol 26:935–943

    Article  CAS  Google Scholar 

  7. Shamsipur M, Fattahi N, Pirsaheb M, Sharafi K (2012) J Sep Sci 35:2718–2724

    Article  CAS  Google Scholar 

  8. Rahman MM, Sharma HM, Park JH, Abd El-Aty AM, Choi JH, Nahar N, Shim JH (2013) Biomed Chromatogr 27:924–930

    Article  CAS  Google Scholar 

  9. Nacher-Mestre J, Serrano R, Portoles T, Berntssen MH, Perez-Sanchez J, Hernandez F (2014) J Agric Food Chem 62:2165–2174

    Article  CAS  Google Scholar 

  10. Zhao P, Huang B, Li Y, Han Y, Zou N, Gu K, Li X, Pan C (2014) J Agric Food Chem 62:3710–3725

    Article  CAS  Google Scholar 

  11. Prasad BB, Jauhari D, Tiwari MP (2014) Biosens Bioelectron 59:81–88

    Article  CAS  Google Scholar 

  12. Hoshino Y, Kodama T, Okahata Y, Shea KJ (2008) J Am Chem Soc 130:15242–15243

    Article  CAS  Google Scholar 

  13. Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) J Chromatogr A 1217:2548–2560

    Article  CAS  Google Scholar 

  14. da Silva H, Pacheco JG, Magalhaes JM, Viswanathan S, Delerue-Matos C (2014) Biosens Bioelectron 52:56–61

    Article  CAS  Google Scholar 

  15. Janiak DS, Kofinas P (2007) Anal Bioanal Chem 389:399–404

    Article  CAS  Google Scholar 

  16. Zhu L, Cao Y, Cao G (2014) Biosens Bioelectron 54:258–261

    Article  CAS  Google Scholar 

  17. Singh KP, Ajeet K, Shweta T, Rakesh S, Prashant S (2014) Res J Chem Sci 4:63–70

    Google Scholar 

  18. Singh K, Pasha A, Amitha Rani BE (2013) Chron Young Sci 4:46

  19. Siemann M, Andersson LI, Mosbach K (1996) J Agric Food Chem 44:141–145

    Article  CAS  Google Scholar 

  20. Baggiani C, Anfossi L, Giovannoli C, Tozzi C (2004) Talanta 62:1029–1034

    Article  CAS  Google Scholar 

  21. Zhu X, Yang J, Su Q, Cai J, Gao Y (2005) J Chromatogr A 1092:161–169

    Article  CAS  Google Scholar 

  22. Callan JF, de Silva AP, Magri DC (2005) Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  23. Haupt K, Mayes AG, Mosbach K (1998) Anal Chem 70:3936–3939

    Article  CAS  Google Scholar 

  24. Carlson CA, Lloyd JA, Dean SL, Walker NR, Edmiston PL (2006) Anal Chem 78:3537–3542

    Article  CAS  Google Scholar 

  25. Nguyen TH, Hardwick SA, Sun T, Grattan KTV (2012) IEEE Sens J 12:255–260

    Article  CAS  Google Scholar 

  26. Syu MJ, Hsu TJ, Lin ZK (2010) Anal Chem 82:8821–8829

    Article  CAS  Google Scholar 

  27. Kubo H, Yoshioka N, Takeuchi T (2005) Org Lett 7:359–362

    Article  CAS  Google Scholar 

  28. Liu RY, Guan GJ, Wang SH, Zhang Zp (2011) Analyst 136:184–190

    Article  CAS  Google Scholar 

  29. Wagner R, Wan W, Biyikal M, Benito-Pena E, Moreno-Bondi MC, Lazraq I, Rurack K, Sellergren B (2013) J Org Chem 78:1377–1389

    Article  CAS  Google Scholar 

  30. Petkova I, Nikolov P, Dryanska V (2000) J Photochem Photobiol, A 133:21–25

    Article  CAS  Google Scholar 

  31. Leng WN, Zhou YM, Xu QH, Liu JZ (2001) Polymer 42:7749–7754

    Article  CAS  Google Scholar 

  32. Batista RMF, Costa SPG, Malheiro EL, Belsley M, Raposo MMM (2007) Tetrahedron 63:4258–4265

    Article  CAS  Google Scholar 

  33. Zhao J, Nie L, Zhang LY, Jin Y, Peng Y, Du SH, Jiang N (2013) Anal Methods 5:3009–3015

    Article  CAS  Google Scholar 

  34. Barman N, Singha D, Sahu K, Phys J (2013) J Phys Chem A 117:3945–3953

    Article  CAS  Google Scholar 

  35. Zhou T, Xiao XH, Li GK (2012) Anal Chem 84:420–427

    Article  CAS  Google Scholar 

  36. Chai LK, Zaidel ND, Hansen HCB (2012) Food Chem 131:611–616

    Article  CAS  Google Scholar 

  37. Zhou Y, Qu ZB, Zeng Y, Zhou T, Shi G (2014) Biosens Bioelectron 52:317–323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Scientific Foundation (21375146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Ren.

Additional information

M. Li and F. Shen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Shen, F., Zhang, Z. et al. A Novel 2-Acrylamide-6-Methoxybenzothiazole Fabricated Molecularly Imprinted Polymers for Direct Fluorescent Sensing of Alachlor. Chromatographia 79, 71–78 (2016). https://doi.org/10.1007/s10337-015-2998-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2998-4

Keywords