Skip to main content
Log in

Separation Study of Eight Isoflavones by MEKC with Different Surfactants

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Isoflavones are a very important group of natural products. This study investigated the separation of eight isoflavones, namely ononin, daidzin, genistin, biochanin A, formononetin, puerarin, genistein, and daidzein, from pueraria by micellar electrokinetic chromatography (MEKC) with different surfactants. The following micellar systems of MEKC were systematically compared for the analysis of these isoflavones: (1) a single surfactant comprising the anionic surfactant sodium dodecyl sulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide, the neutral surfactant polyoxyethylene sorbitan monolaurate (Tween 20), and the ionic liquid-type surfactant (also a cationic surfactant) 1-dodecyl-3-methylimidazolium tetrafluoroborate (C12MIMBF4); (2) different single surfactants with 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) as an additive (modifier); and (3) mixed micelles of SDS + Tween 20 and C12MIMBF4 + Tween 20. Both SDS with BMImBF4 as additive and mixed micelles of SDS + Tween 20 had the highest separation efficiency for the eight investigated compounds. Furthermore, the SDS with BMImBF4 as additive was more stable (good repeatability of retention time and peak shape of analytes) than mixed micelles of SDS + Tween 20, which may be the result of a stabilizing effect of BMImBF4. Therefore, the final analytical conditions were 15 mM SDS added with 50 mM BMImBF4 in 30 mM sodium tetraborate (STB, pH 9.5) as running buffer; applied voltage, 20 kV; injection, 50 mbar for 5 s; cartridge temperature, 25 °C; compounds were detected at 260 nm. The developed method was fully validated (limit of detection, limit of quantification, intraday precision, inter-day precision, and recovery) and successfully applied to determine the eight analytes in three Radix Puerariae samples. The present study indicated that SDS with ionic liquids as additive in MEKC was suitable for the analysis of isoflavones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silva M (2013) Micellar electrokinetic chromatography: a review of methodological and instrumental innovations focusing on practical aspects. Electrophoresis 34:141–158

    Article  CAS  Google Scholar 

  2. Rabanes HR, Guidot AM, Quirino JP (2014) Micellar electrokinetic chromatography of the constituents in Philippine lagundi (Vitex negundo) herbal products. Microchem J 112:153–158

    Article  CAS  Google Scholar 

  3. Gonda S, Parizsa P, Surányi G, Gyémánt G, Vasas G (2012) Quantification of main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar electrokinetic chromatographic (MEKC) method. J Pharm Biomed Anal 66:68–74

    Article  CAS  Google Scholar 

  4. Fernandez-Molina JM, Silva M (2014) Micro solid-phase derivatization analysis of low-molecular mass aldehydes in treated water by micellar electrokinetic chromatography. Electrophoresis 35:819–826

    Article  CAS  Google Scholar 

  5. El-Attug MN, Hoogmartens J, Adams E, Schepdael AV (2012) Optimization of capillary electrophoresis method with contactless conductivity detection for the analysis of tobramycin and its related substances. J Pharm Biomed Anal 58:49–57

    Article  CAS  Google Scholar 

  6. Wang XK, He YZ, Qian LL (2007) Determination of polyphenol components in herbal medicines by micellar electrokinetic capillary chromatography with Tween 20. Talanta 74:1–6

    Article  CAS  Google Scholar 

  7. Lü WJ, Chen YL, Chen HL, Chen XG (2013) Optimization of the micellar electrokinetic capillary chromatographic determination of dauricine and daurisoline in Rhizoma Menispermi and its herbal medicine using experimental design and radial basis function neural network. J Anal Chem 68:525–531

    Article  Google Scholar 

  8. Liu LH, Liu XM, Chen XG, Hu ZD (2005) Separation and determination of tetrandrine and fangchinoline in herbal medicines by flow injection-micellar electrokinetic capillary chromatography with internal standard method. J Chromatogr A 1098:177–182

    Article  CAS  Google Scholar 

  9. Wei Y, Wang F, Zhang ZQ, Ren CC, Lin Y (2014) Micellization and thermodynamic study of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids in aqueous solution. J Chem Eng Data 59:1120–1129

    Article  CAS  Google Scholar 

  10. Zhang SH, Gao YN, Dong B, Zheng LQ (2010) Interaction between the added long-chain ionic liquid 1-dodecyl-3-methylimidazolium tetrafluoroborate and Triton X-100 in aqueous solutions. Colloids Surf A Physicochem Eng Asp 372:182–189

    Article  CAS  Google Scholar 

  11. Dong B, Li N, Zheng LQ, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  12. Pino V, German-Hernandez M, Martin-Perez A, Anderson JL (2012) Ionic liquid-based surfactants in separation science. Sep Sci Technol 47:264–276

    Article  CAS  Google Scholar 

  13. Abd El-Hady D, Albishri HM (2014) Alkyl imidazolium ionic liquid based sweeping-micellar electrokinetic chromatography for simultaneous determination of seven tea catechins in human plasma. J Chromatogr B 969:224–229

    Article  Google Scholar 

  14. Rageh AH, Pyell U (2013) Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophi urinary nucleosides. J Chromatogr A 1316:135–146

    Article  CAS  Google Scholar 

  15. Behera K, Pandey S (2009) Interaction between ionic liquid and zwitterionic surfactant: a comparative study of two ionic liquids with different anions. J Colloid Interface Sci 331:196–205

    Article  CAS  Google Scholar 

  16. Łuczak J, Latowska A, Hupka J (2015) Micelle formation of Tween 20 nonionic surfactant in imidazolium ionic liquids. Colloids Surf A Physicochem Eng Asp 471:26–37

    Article  Google Scholar 

  17. Mwongela SM, Numan A, Gill NL, Agbaria RA, Warner IM (2003) Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Anal Chem 75:6089–6096

    Article  CAS  Google Scholar 

  18. Tian K, Qi SD, Cheng YQ, Chen XG, Hu ZD (2005) Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier. J Chromatogr A 1078:181–187

    Article  CAS  Google Scholar 

  19. Liu LH, Chen XG, Liu JL, Deng XX, Duan WJ, Tan SY (2010) Determination of capsaicin and dihydrocapsaicin in Capsicum anuum and related products by capillary electrophoresis with a mixed surfactant system. Food Chem 119:1228–1232

    Article  CAS  Google Scholar 

  20. Wang SM, Fan L, Zhou WL (2010) Sensitive analysis of 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein-labeled catecholamines by mixed MEKC-LIF. Chromatographia 72:1121–1128

    Article  CAS  Google Scholar 

  21. Wei SY, Chen Y, Xu XY (2014) Progress on the pharmacological research of puerarin: a review. Chin J Nat Med 12:0407–0414

    Google Scholar 

  22. Jun M, Fu HY, Hong J, Wan X, Yang CS, Ho CT (2003) Comparison of antioxidant activities of isoflavones from Kudzu Root (Pueraria lobata Ohwi). J Food Sci 68:2117–2122

    Article  CAS  Google Scholar 

  23. Zhang Z, Lam TN, Zuo Z (2013) Radix Puerariae: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 53:787–811

    Article  Google Scholar 

  24. Maji AK, Pandit S, Banerji P, Banerjee D (2014) Pueraria tuberosa: a review on its phytochemical and therapeutic potential. Nat Prod Res 28:2111–2127

    Article  CAS  Google Scholar 

  25. Ritchie MR, Cummings JH, Morton MS, Steel CM, Bolton-Smith C, Riches AC (2006) A newly constructed and validated isoflavone database for the assessment of total genistein and daidzein intake. Br J Nutr 95:204–213

    Article  CAS  Google Scholar 

  26. Magiera S, Uhlschmied C, Rainer M, Huck CW, Baranowska I, Bonn GK (2011) GC-MS method for the simultaneous determination of β-blockers, flavonoids, isoflavones and their metabolites in human urine. J Pharm Biomed Anal 56:93–102

    Article  CAS  Google Scholar 

  27. Du G, Zhao HY, Zhang QW, Li GH, Yang FQ, Wang Y, Li YC, Wang YT (2010) A rapid method for simultaneous determination of 14 phenolic compounds in Radix Puerariae using microwave-assisted extraction and ultra high performance liquid chromatography coupled with diode array detection and time-of-flight mass spectrometry. J Chromatogr A 1217:705–714

    Article  CAS  Google Scholar 

  28. Dong J, Zhu Y, Gao XM, Chang YX, Wang M, Zhang P (2013) Qualitative and quantitative analysis of the major constituents in Chinese medicinal preparation Dan-Lou tablet by ultra high performance liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 80:50–62

    Article  CAS  Google Scholar 

  29. Cao XL, Tian Y, Zhang TY, Li X, Ito Y (1999) Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J Chromatogr A 855:709–713

    Article  CAS  Google Scholar 

  30. Ganzera M (2015) Supercritical fluid chromatography for the separation of isoflavones. J Pharm Biomed Anal 107:364–369

    Article  CAS  Google Scholar 

  31. Liu LZ, Feng F, Shuang SM, Bai YF, Choi MM (2012) Determination of puerarin in pharmaceutical and biological samples by capillary zone electrophoresis with UV detection. Talanta 91:83–87

    Article  CAS  Google Scholar 

  32. Chen G, Zhang JX, Ye JN (2001) Determination of puerarin, daidzein and rutin in Pueraria lobata (Wild.) Ohwi by capillary electrophoresis with electrochemical Detection. J Chromatogr A 923:255–262

    Article  CAS  Google Scholar 

  33. Peng YY, Yuan JJ, Ye JN (2007) Determination of puerarin, daidzein, and genistein in Puerariae Radix and its medicinal preparations by CE-ED. Am Lab 39:13–17

    CAS  Google Scholar 

  34. Chen XJ, Zhao J, Wang YT, Huang LQ, Li SP (2012) CE and CEC analysis of phytochemicals in herbal medicines. Electrophoresis 33:168–179

    Article  Google Scholar 

  35. Yang FQ, Zhao J, Li SP (2010) CEC of phytochemical bioactive compounds. Electrophoresis 31:260–277

    Article  Google Scholar 

  36. Poole SK, Poole CF (2008) Quantitative structure-retention (property) relationships in micellar electrokinetic chromatography. J Chromatogr A 1182:1–24

    Article  CAS  Google Scholar 

  37. Terabe S (2009) Capillary separation: micellar electrokinetic chromatography. Annu Rev Anal Chem 2:99–120

    Article  CAS  Google Scholar 

  38. Behera K, Pandey MD, Porel M, Pandey S (2007) Unique role of hydrophilic ionic liquid in modifying properties of aqueous Triton X-100. J Chem Phys 127:184501

    Article  Google Scholar 

  39. Behera K, Pandey S (2007) Concentration-dependent dual behavior of hydrophilic ionic liquid in changing properties of aqueous sodium dodecyl sulfate. J Phys Chem B 111:13307–13315

    Article  CAS  Google Scholar 

  40. Xiao W, Wang FQ, Li CH, Zhang Q, Xia ZN, Yang FQ (2015) Determination of eight isoflavones in Radix Puerariae by capillary zone electrophoresis with an ionic liquid as an additive. Anal Methods 7:1098–1103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21275169, 81202886 and 21175159), and Project No. CQDXWL-2014-Z007 supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Hui Zhang or Feng-Qing Yang.

Ethics declarations

Conflict of interest

The authors declared that they have not conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Chen, C., Zhang, Q. et al. Separation Study of Eight Isoflavones by MEKC with Different Surfactants. Chromatographia 78, 1385–1393 (2015). https://doi.org/10.1007/s10337-015-2969-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2969-9

Keywords

Navigation