Skip to main content
Log in

Factors Influencing the Isothermal Retention Indices of 51 Solutes on 12 Stationary Phases of Different Polarity: Applicability of the Solvation Parameter Model

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Isothermal retention indices (I) at 333–413 K on 12 stationary phases (SPs) covering a wide polarity range of a variety of volatile solutes belonging to 7 one-heteroatom chemical function series and 10 non-series solutes have been determined. The I values were computed with a method (LQG method) which does not require the determination of holdup times of the chromatographic column. I values of some compounds never before studied are reported. The influence on the retention indices of the column temperature, methylene number, and polarity of both the stationary phase and the solute has been studied. The solvation parameter model (SPM) as a function of I has been used for predicting I values, and for unraveling the influence of the polarity of stationary phase and solute on the retention indices. Seeley et al.’s formulation of the SPM has been used for quantifying the influence of polar and non-polar interactions on the I, and for checking the agreement between calculated and experimental values. According to our results, the I values obtained by the modified SPM can be considered equal to the experimental I values at the 99 % confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kováts E (1965) Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1:229–247

    Google Scholar 

  2. James AT, Martin AJP (1952) Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 50:679–690

    CAS  Google Scholar 

  3. Tarján G, Tekler V, Nyiredy S, Mészáros SY, Ullrich E, Takács JM (2009) The first fifty years. In: Tekler V (ed) Retention indices in gas-liquid chromatography (1958–2008). Scientific Society for Organization and Management, Budapest, pp 7–93

    Google Scholar 

  4. Kováts E (1958) Gas-chromatographische charakterisierung organischer verbindungen. Teil 1: retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv Chim Acta 41:1915–1932

    Article  Google Scholar 

  5. Lebrón-Aguilar R, Quintanilla-López JE, García-Domínguez JA (1997) Hold-up time in gas chromatography. I. New approach to its estimation. J Chromatogr A 760:219–226

    Article  Google Scholar 

  6. Quintanilla-López JE, Lebrón-Aguilar R, García-Domínguez JA (1997) The hold-up time in gas chromatography. II. Validation of the estimation based on the concept of a zero carbon atoms alkane. J Chromatogr A 767:127–136

    Article  Google Scholar 

  7. García-Domínguez JA, Quintanilla-López JE, Lebrón-Aguilar R (1998) The hold-up time in gas chromatography. III. Linearity of the plot of ln t’ R of the n-alkanes vs. carbon number questioned. J Chromatogr A 803:197–202

    Article  Google Scholar 

  8. Lebrón-Aguilar R, García-Domínguez JA, Quintanilla-López JE (1998) Hold-up time in gas chromatography. IV. Improved determination of Kováts’ retention indices. J Chromatogr A 805:161–168

    Article  Google Scholar 

  9. Poole CF (2003) The column in gas chromatography. The essence of chromatography. Elsevier, Amsterdam, pp 1–78

    Chapter  Google Scholar 

  10. Poole CF, Poole SK (2002) Column selectivity from the perspective of the solvation parameter model. J Chromatogr A 965:263–299

    Article  CAS  Google Scholar 

  11. Poole CF, Poole SK (2008) Separation characteristics of wall-coated open-tubular columns for gas chromatography. J Chromatogr A 1184:254–280

    Article  CAS  Google Scholar 

  12. Abraham MH, Poole CF, Poole SK (1999) Classification of stationary phases and other materials by gas chromatography. J Chromatogr A 842:79–114

    Article  CAS  Google Scholar 

  13. Lebrón-Aguilar R, Quintanilla-López JE, Tello AM, Santiuste JM (2007) Isothermal retention indices on poly(3,3,3-trifluoropropylmethylsiloxane) stationary phases. J Chromatogr A 1160:276–288

    Article  Google Scholar 

  14. Tello AM, Lebrón-Aguilar R, Quintanilla-López JE, Santiuste JM (2009) Isothermal retention indices on poly(3-cyanopropylmethylsiloxane) stationary phases. J Chromatogr A 1216:1630–1639

    Article  CAS  Google Scholar 

  15. Seeley JV, Libby EM, Edwards KAH, Seeley SK (2009) Solvation parameter model of comprehensive two-dimensional gas chromatography separations. J Chromatogr A 1216:1650–1657

    Article  CAS  Google Scholar 

  16. Abraham MH (1993) Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev 22:73–83

    Article  CAS  Google Scholar 

  17. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS (1994) Hydrogen-bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 K, and a new method for its determination. J Chem Soc Perkin Trans 2:1777–1791

    Article  Google Scholar 

  18. Lebrón-Aguilar R, Quintanilla-López JE, Santiuste JM (2010) Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity. J Chromatogr A 1217:7767–7775

    Article  Google Scholar 

  19. Santiuste JM, Quintanilla-López JE, Becerra R, Lebrón-Aguilar R (2014) On the influence of column temperature on the isothermal retention indices of structurally different solutes on a poly(dimethylsiloxane) capillary column. J Chromatogr A 1365:204–211

    Article  CAS  Google Scholar 

  20. Pacáková V, Feltl L (1992) Temperature dependence of retention indices. Chromatographic retention indices-an aid to identification of organic compounds. Ellis Horwood, Chichester, pp 64–79

    Google Scholar 

  21. NIST Mass Spec Data Center, Stein SE Retention Indices. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. US National Institute of Standards and Technology (NIST), Gaithersburg, MD. http://webbook.nist.gov. Accessed 12 December 2014

  22. Santiuste JM, Quintanilla-López JE, Takács JM, Lebrón-Aguilar R (2012) Behaviour of the isothermal retention indices of n-alkylbenzenes on stationary phases of different polarity. J Chromatogr A 1222:90–97

    Article  CAS  Google Scholar 

  23. Ciazynska-Halarewicz K, Borucka E, Kowalska T (2002) Temperature dependence of Kováts indices in gas chromatography. Statistical and thermodynamic verification of a 'kinetic' model. Acta Chromatogr 12:65–79

    CAS  Google Scholar 

  24. Kowalska T, Héberger K, Görgényi M (2003) Temperature dependence of Kováts indices in gas chromatography. Explanation of empirical constants by use of transition state theory. Acta Chromatogr 13:60–68

    CAS  Google Scholar 

  25. Ciazynska-Halarewicz K, Kowalska T (2003) A study of the dependence of the Kováts retention index on the temperature of analysis on stationary phases of different polarity. Acta Chromatogr 13:69–80

    CAS  Google Scholar 

  26. Héberger K, Görgényi M, Kowalska T (2002) Temperature dependence of Kováts indices in gas chromatography revisited. J Chromatogr A 973:135–142

    Article  Google Scholar 

  27. Peng CT, Yang ZC, Ding SF (1991) Prediction of retention indexes. II. Structure-retention index relationship on polar columns. J Chromatogr 586:85–112

    Article  CAS  Google Scholar 

  28. Peng CT (2000) Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index. J Chromatogr A 903:117–143

    Article  CAS  Google Scholar 

  29. Rotzsche H (1991) Characterization of stationary phases. Stationary phases in gas chromatography. Elsevier, Amsterdam, pp 80–102

    Google Scholar 

  30. Ettre LS (1974) The retention index system; its utilization for substance identification and liquid phase characterization—Part II: correlation between retention index, structure and analytical characteristics. Chromatographia 7:39–46

    Article  Google Scholar 

  31. Budahegyi MV, Lombosi ER, Lombosi TS, Mészáros SY, Nyiredy S, Tarján G, Timár I, Takács JM (1983) Twenty-fifth anniversary of the retention index system in gas-liquid chromatography. J Chromatogr 271:213–307

    Article  CAS  Google Scholar 

  32. McReynolds WO (1970) Characterization of some liquid phases. J Chromatogr Sci 8:685–691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank financial support from the Comunidad of Madrid and European funding from FEDER program (project S2013/ABI-3028, AVANSECAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Santiuste.

Additional information

To the memory of Dr. Joszef M. Takács, one of the founders of the Gas Chromatographic Research Group for Study of Retention Index System, Budapest (Hungary), deceased in September 2013, with whom we had the honor of working since 1994.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10337_2015_2924_MOESM1_ESM.pdf

Supplementary materials associated with this article are given in Tables S1, S2, S3, S4, S5, S6 and Figure S1 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiuste, J.M., Quintanilla-López, J.E., Becerra, R. et al. Factors Influencing the Isothermal Retention Indices of 51 Solutes on 12 Stationary Phases of Different Polarity: Applicability of the Solvation Parameter Model. Chromatographia 78, 1071–1081 (2015). https://doi.org/10.1007/s10337-015-2924-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2924-9

Keywords

Navigation