Abstract
The suitability of micellar electrokinetic capillary chromatography (MEKC) with laser-induced fluorescence (LIF) detection for simultaneous determination of two arginine analogues (homocysteine and homoarginine) and five closely related metabolites (asymmetric dimethyl-l-arginine, dimethyl-l-arginine, monomethyl-l-arginine, citrullin, and ornithine) in fluids from type 2 diabetics with peptic ulcer bleeding (PUB) has been investigated. 5-Carboxyfluorescein succinimidyl ester (CFSE) was chosen as the fluorescent labeling reagent and non-endogenous phenylpropanolamine (PPA) as the internal standard. Conditions affecting derivatization and separation were optimized. Under the optimum conditions, maximum derivatization could be achieved in 20 min at room temperature. Complete baseline separation was achieved in 10 min, and the relative standard deviations (RSD) of migration times and corrected peak areas were <3 % for intra-day assay and <5 % for inter-day assay. Limits of detection (LODs) were 0.12–1.70 nM for the eight analytes, which are well below the concentrations expected in real fluids. Compared with previously reported methods, 5 to 600-fold improvements in sensitivity were achieved by use of LIF detection. Sample preparation and analysis time were short and the derivatives of the analytes were highly stable. The method was fully validated with real plasma and urine and recoveries of spiked compounds were 95–102 % with the RSD <4 %.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Chen C, Nott TJ, Jin J, Pawson T (2011) Nat Rev Mol Cell Biol 12(10):629–642
Schwedhelm E, Böger RH (2011) Nat Rev Nephrol 7(5):275–285. doi:10.1038/nrneph.2011.31
Gayatri S, Bedford MT (2014) Biochim Biophys Acta 1839(8):702–710. doi:10.1016/j.bbagrm.2014.02.015
Pachaiyappan B, Woster PM (2014) Bioorg Med Chem Lett 24(1):21–32
Alkaitis MS, Crabtree MJ (2012) Curr Heart Fail Rep 9(3):200–210
Caplin B, Leiper J (2012) Arterioscler Thromb Vasc Biol 32(6):1343–1353. doi:10.1161/ATVBAHA.112.247726
Donato AJ, Morgan RG, Walker AE, Lesniewski LA (2015) J Mol Cell Cardiol 15:34–36. doi:10.1016/j.yjmcc.2015.01.021
Pope AJ, Karuppiah K, Cardounel AJ (2009) Pharmacol Res 60(6):461–465. doi:10.1016/j.phrs.2009.07.016
Meinitzer A, Kielstein JT, Pilz S, Drechsler C, Ritz E, Boehm BO, Winkelmann BR, März W (2011) Clin Chem 57(1):112–121. doi:10.1373/clinchem.2010.150854
Kasumov T, Edmison JM, Dasarathy S, Bennett C, Lopez R, Kalhan SC (2011) Metabolism 60(6):776–781. doi:10.1016/j.metabol.2010.07.027
Atzler D, Schwedhelm E, Choe CU (2015) Curr Opin Clin Nutr Metab Care 18(1):83–88. doi:10.1097/MCO.0000000000000123
Kayacelebi AA, Pham VV, Willers J, Hahn A, Stichtenoth DO, Jordan J, Tsikas D (2014) Int J Cardiol 176(3):1129–1131. doi:10.1016/j.ijcard.2014.07.296
Forteschi M, Sotgia S, Pintus G, Zinellu A, Carru C (2014) J Sep Sci 37(17):2418–2423. doi:10.1002/jssc.201400177
Jones CE, Darcy CJ, Woodberry T, Anstey NM (2009) McNeil YR (2010). J Chromatogr B Analyt Technol Biomed Life Sci 878(1):8–12. doi:10.1016/j.jchromb.10.035
Blackwell S, O’Reilly DS, Talwar DK (2009) Clin Chim Acta 401(1–2):14–19. doi:10.1016/j.cca.2008.10.032
Široká R, Trefil L, Racek J, Cibulka R (2006) Klin Biochem Metab 14(35):111–113
Kleparnik M, Tomandlova M, Glatz Z, Tomandl J (2013) J Sep Sci 36(23):3696–3701. doi:10.1002/jssc.201300813
Linz TH, Snyder CM, Lunte SM (2012) J Lab Autom 17(1):24–31. doi:10.1177/2211068211424551
Linz TH, Lunte SM (2013) Electrophoresis 34(11):1693–1700. doi:10.1002/elps.201200567
Trapp G, Sydow K, Dulay MT, Chou T, Cooke JP, Zare RN (2004) J Sep Sci 27(17–18):1483–1490
Zinellu A, Sotgia S, Zinellu E, Pinna A, Carta F, Gaspa L, Deiana L, Carru C (2007) Electrophoresis 28(12):1942–1948
Zinellu A, Sotgia S, Deiana L, Carru C (2013) Methods Mol Biol 984:131–138. doi:10.1007/978-1-62703-296-4_10
Andrade F, Llarena M, Lage S, Aldámiz-Echevarría L (2014) J Chromatogr Sci 53(5):787–792. doi:10.1093/chromsci/bmu126
Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014) Amino Acids 46(9):2205–2217. doi:10.1007/s00726-014-1774-3
Martens-Lobenhoffer J, Bode-Böger SM (2007) J Chromatogr B Analyt Technol Biomed Life Sci 851(1–2):30–41
Martens-Lobenhoffer J, Bode-Böger SM (2006) Clin Chem 2(3):488–493
Davids M, Swieringa E, Palm F, Smith DE, Smulders YM, Scheffer PG, Blom HJ, Teerlink T (2012) J Chromatogr B Analyt Technol Biomed Life Sci 900:38–47. doi:10.1016/j.jchromb.2012.05.025
Silva M (2013) Electrophoresis 34(1):141–158. doi:10.1002/elps.201200349
Zhang XL, Yuan B, Yang Q (2011) Chromatographia 73:527–534. doi:10.1007/s10337-010-1841-1
Ban E, Song EJ (2013) J Chromatogr B Analyt Technol Biomed Life Sci 929:180–186. doi:10.1016/j.jchromb.2013.04.028
Acknowledgments
This work was supported by the Fundamental Research Funds (CDJXS1454028) for the Central Universities of MOE of China.
Conflict of interest
Qianping Liang declares that she has no conflict of interest. Hongchao Chen declares that he has no conflict of interest. Fuqing Li declares that he has no conflict of interest. Xiaolin Du declares that he has no conflict of interest.
Ethical standard
All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients before inclusion in the study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, Q., Chen, H., Li, F. et al. Simultaneous Sensitive MEKC–LIF Determination of Homocysteine, Homoarginine, and Six Arginine Metabolic Derivatives in Fluids from Type 2 Diabetics with Peptic Ulcer Bleeding. Chromatographia 78, 1049–1056 (2015). https://doi.org/10.1007/s10337-015-2919-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10337-015-2919-6


