Skip to main content
Log in

Optimization of a Solid-Phase Extraction Method for the Determination of 12 Aminoglycosides in Water Samples Using LC–ESI–MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A new and simple method has been developed for determination and quantification of 12 aminoglycosides in environmental water samples. The method is based on solid-phase extraction (SPE) followed by liquid chromatography coupled with tandem mass spectrometry (LC–ESI–MS/MS) for analysis. After optimization of LC–ESI–MS/MS conditions, two SPE cartridges, reversed-phase C18 with pentafluoropropionic acid (PFPA) and polymeric mixed mode cation exchange cartridges, have been tested to determine aminoglycoside residues in water. Parameters affecting the extraction efficiency for the two cartridges such as eluent type, percolation volume and percentage of ion pair PFPA were optimized. Extraction on C18 cartridges with PFPA reagent showed a better result in terms of recovery (65–115 %) and relative standard deviation (0.5–15 %) relative to strong cation exchange. This method was validated and their limits of quantification were in the range 5–50 ng L−1. The method was applied to evaluate the occurrence of these compounds in influent and effluent wastewater treatment plant and hospital water samples in Lebanon. Gentamycin was found in hospital wastewater samples at a concentration of 30 ng L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prayle A, Watson A, Fortnum H, Smyth A (2010) Thorax 65:654–658

    Article  Google Scholar 

  2. Odonkor ST, Addo KK (2011) Int J Biol Med 4:1204–1210

    Google Scholar 

  3. Tawa R, Matsunaga H, Fujimoto T (1998) J Chromatogr A 812:141–150

    Article  CAS  Google Scholar 

  4. Bogialli S, Curini R, Di Corcia A, Laganà A, Mele M, Nazzari M (2005) J Chromatogr A 1067:93–100

    Article  CAS  Google Scholar 

  5. Stead DA, Richards RME (1997) J Chromatogry B 693:415–421

    Article  CAS  Google Scholar 

  6. Oertel R, Neumeister V, Kirch W (2004) J Chromatogr A 1058:197–201

    Article  CAS  Google Scholar 

  7. Bryan LE, Kwan S (1997) Antimicrob Agents Chemother 12:163–177

    Article  Google Scholar 

  8. Marzo A (1998) Dal Bo L. J Chromatogr A 812:17–34

    Article  CAS  Google Scholar 

  9. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  10. Kümmerer K (2001) Chemosphere 45:957–969

    Article  Google Scholar 

  11. Zhu WX, Yang JZ, Wei W, Liu YF, Zhang SS (2008) J Chromatogr A 1207:29–37

    Article  CAS  Google Scholar 

  12. Serrano JM, Silva M (2006) J Chromatogr A 1117:176–183

    Article  CAS  Google Scholar 

  13. Löffler D, Ternes TA (2003) J Chromatogr A 1000:583–588

    Article  Google Scholar 

  14. McGlinchey T, Rafter P, Regan F, McMahon GA (2008) Anal Chim Acta 624:1–15

    Article  CAS  Google Scholar 

  15. Hage DS (1999) Anal Chem 71:294–304

    Article  Google Scholar 

  16. Isoherranen SN (1999) J AOAC Int 82:1017–1045

    CAS  Google Scholar 

  17. Soltes L (1999) Biomed Chromatogr 13:3

    Article  CAS  Google Scholar 

  18. Levêque D, Gallion-Renault C, Monteil H, Jehl F (1998) J Chromatogr A 815:163–172

    Article  Google Scholar 

  19. Tao Y, Chen D, Yu H, Huang L, Liu Z, Cao X, Yan C, Pan Y, Liu Z, Yuan Z (2012) Food Chem 135:676–683

    Article  CAS  Google Scholar 

  20. Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) J Chromatogr A 1092:206–215

    Article  CAS  Google Scholar 

  21. Vanderford RJ, Rexing DJ, Snyder SA (2003) Anal Chem 75:6265–6274

    Article  CAS  Google Scholar 

  22. Gros M, Petrović M, Barceló D (2006) Talanta 70:678–690

    Article  CAS  Google Scholar 

  23. Petrovic M, Gros M, Barcelo D (2006) J Chromatogr A 1124:68–81

    Article  CAS  Google Scholar 

  24. Petrović M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14

    Article  Google Scholar 

  25. Carson MC (2000) J Chromatogr A 885:343–350

    Article  CAS  Google Scholar 

  26. De Miguel I, Puech-Costes E, Samain D (1987) J Chromatogr A 407:109–119

    Article  Google Scholar 

  27. Kaufmann A, Butcher P, Maden K (2012) Anal Chim Acta 711:46–53

    Article  CAS  Google Scholar 

  28. Mokh S, Jaber F, Kouzayha A, Budzinski H, Aliskandarani M (2014) Am J Anal Chem 5:982–994

    Article  CAS  Google Scholar 

  29. Alechaga E, Moyano E, Galceran MT (2014) Anal Bioanal Chem 406:4941–4953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Al Iskandarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokh, S., El Hawari, K., Nassar, R. et al. Optimization of a Solid-Phase Extraction Method for the Determination of 12 Aminoglycosides in Water Samples Using LC–ESI–MS/MS. Chromatographia 78, 631–640 (2015). https://doi.org/10.1007/s10337-015-2877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2877-z

Keywords

Navigation