, Volume 78, Issue 5–6, pp 435–443 | Cite as

Simultaneous Identification and Quantification of Triacyglycerol Species in Human Plasma by Flow-Injection Electrospray Ionization Tandem Mass Spectrometry

  • M. SanderEmail author
  • S. Becker
  • J. Thiery
  • U. Ceglarek
Part of the following topical collections:
  1. Recent Developments in Clinical Omics


The analysis of triacylglycerol (TG) species is of interest in diseases that are associated with hypertriglycidemia. The individual composition of TGs seems to be of special interest in the development of atherosclerosis or diabetes type II. Enzymatic methods based on saponification and glycerol analysis are not suited for the TG fatty acid distribution. The aim of the study was to develop a rapid method for a molecular species fingerprinting of TGs. Protein precipitation of 5 µL human plasma was carried out with toluene/methanol (1:1 v/v). Tandem mass spectrometric detection (mass range m/z 700–1,000) was performed by combination of nine neutral loss scans (14:0, 15:0, 16:0, 16:1, 18:0, 18:1, 18:2, 18:3, and 20:4) after flow-injection analysis for 2 min. Deuterated internal standards had been used for quantification. In human EDTA-plasma the detection limit was 3.3 µg/mL and the lower limit of quantification was 11.1 µg/mL. Linearity was proved for TG concentrations up to 100 µg/mL for each TG species. Nineteen TG molecular species were determined with an intra-day coefficient of variation of 15.0–20.9 % (n = 9), and an inter-day coefficient of variation of 17.3–36.6 % (n = 9). Recovery of TG 50:0 using the equivalent internal standard was 97.0 %. Nineteen TG molecular species can be analyzed in 2 min from human plasma or serum by the novel tandem mass spectrometric approach. In subsequent studies, the distribution of plasma TG molecular species can be analyzed under high-throughput conditions in healthy and diseased individuals.


Triacylglycerol species Flow-injection analysis Electrospray ionization Tandem mass spectrometry Neutral loss 

Supplementary material

10337_2014_2782_MOESM1_ESM.pdf (172 kb)
Supplementary material 1 (PDF 172 kb)


  1. 1.
    Storlien LH, Kriketos AD, Calvert GD, Baur LA, Jenkins AB (1997) Fatty acids, triglycerides and syndromes of insulin resistance. Prostaglandins Leukot Essent Fatty Acids 57(4–5):379–385. doi: 10.1016/S0952-3278(97)90414-2 CrossRefGoogle Scholar
  2. 2.
    Nordestgaard BG, Benn M, Schnohr P, Tybjærg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3):299–308CrossRefGoogle Scholar
  3. 3.
    Han X, Gross RW (2001) Quantitative Analysis and Molecular Species Fingerprinting of Triacylglyceride Molecular Species Directly from Lipid Extracts of Biological Samples by Electrospray Ionization Tandem Mass Spectrometry. Anal Biochem 295(1):88–100. doi: 10.1006/abio.2001.5178 CrossRefGoogle Scholar
  4. 4.
    Freiberg JJ, Tybjærg-Hansen A, Jensen J, Nordestgaard BG (2008) NOnfasting triglycerides and risk of ischemic stroke in the general population. JAMA 300(18):2142–2152CrossRefGoogle Scholar
  5. 5.
    Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, Yang E, Farrell L, Fox CS, O’Donnell CJ, Carr SA, Vasan RS, Florez JC, Clish CB, Wang TJ, Gerszten RE (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Investig 121(4):1402–1411. doi: 10.1172/jci44442 CrossRefGoogle Scholar
  6. 6.
    McBride PE (2007) Triglycerides and risk for coronary heart disease. JAMA 298(3):336–338CrossRefGoogle Scholar
  7. 7.
    Hunter JE (2001) Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 36(7):655–668. doi: 10.1007/s11745-001-0770-0 CrossRefGoogle Scholar
  8. 8.
    Krank J, Murphy RC, Barkley RM, Duchoslav E, McAnoy A (2007) Qualitative analysis and quantitative assessment of changes in neutral glycerol lipid molecular species within cells. In: Brown HA (ed) Methods in enzymology, vol 432. Academic Press, USA, pp 1–20. doi: 10.1016/S0076-6879(07)32001-6 Google Scholar
  9. 9.
    Fernandez C, Sandin M, Sampaio JL, Almgren P, Narkiewicz K, Hoffmann M, Hedner T, Wahlstrand B, Simons K, Shevchenko A, James P, Melander O (2013) Plasma Lipid Composition and Risk of Developing Cardiovascular Disease. PLoS ONE 8(8):e71846CrossRefGoogle Scholar
  10. 10.
    Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T, Shevchenko A (2005) Lipid Profiling by Multiple Precursor and Neutral Loss Scanning Driven by the Data-Dependent Acquisition. Anal Chem 78(2):585–595. doi: 10.1021/ac051605m CrossRefGoogle Scholar
  11. 11.
    Hsu F-F, Turk J (2010) Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds. J Am Soc Mass Spectrom 21(4):657–669. doi: 10.1016/j.jasms.2010.01.007 CrossRefGoogle Scholar
  12. 12.
    Myher JJ, Kuksis A, Marai L, Sandra P (1988) Identification of the more complex triacylglycerols in bovine milk fat by gas chromatography—mass spectrometry using polar capillary columns. J Chromatogr A 452:93–118. doi: 10.1016/S0021-9673(01)81440-0 CrossRefGoogle Scholar
  13. 13.
    Hoving EB, Jansen G, Volmer M, van Doormaal JJ, Muskiet FAJ (1988) Profiling of plasma cholesterol ester and triglyceride fatty acids as their methyl esters by capillary gas chromatography, preceded by a rapid aminopropyl-silica column chromatographic separation of lipid classes. J Chromatogr B Biomed Sci Appl 434(2):395–409. doi: 10.1016/S0378-4347(88)80006-9 CrossRefGoogle Scholar
  14. 14.
    McAnoy AM, Wu CC, Murphy RC (2005) Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom 16(9):1498–1509. doi: 10.1016/j.jasms.2005.04.017 CrossRefGoogle Scholar
  15. 15.
    Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  16. 16.
    Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissue. J Biol Chem 226:497–509Google Scholar
  17. 17. Accessed 15 April 2014
  18. 18.
    Fliszar KA, Peter Wuelfing W, Li Z, Reed RA (2006) Profiling of medium chain glycerides used in pharmaceutical formulation development by reversed-phase HPLC. J Pharm Biomed Anal 40(4):896–900. doi: 10.1016/j.jpba.2005.08.024 CrossRefGoogle Scholar
  19. 19.
    Holčapek M, Dvořáková H, Lísa M, Girón AJ, Sandra P, Cvačka J (2010) Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography–atmospheric pressure chemical ionization mass spectrometry: Comparison of five different mass analyzers. J Chromatogr A 1217(52):8186–8194. doi: 10.1016/j.chroma.2010.10.064 CrossRefGoogle Scholar
  20. 20.
    Dillon JT, Aponte JC, Tarozo R, Huang Y (2012) Efficient liquid chromatographic analysis of mono-, di-, and triglycerols using silver thiolate stationary phase. J Chromatogr A 1240:90–95. doi: 10.1016/j.chroma.2012.03.083 CrossRefGoogle Scholar
  21. 21.
    Leiker TJ, Barkley RM, Murphy RC (2011) Analysis of diacylglycerol molecular species in cellular lipid extracts by normal-phase LC-electrospray mass spectrometry. Int J Mass Spectrom 305(2–3):103–108. doi: 10.1016/j.ijms.2010.09.008 CrossRefGoogle Scholar
  22. 22.
    Hutchins PM, Barkley RM, Murphy RC (2008) Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J Lipid Res 49(4):804–813. doi: 10.1194/jlr.M700521-JLR200 CrossRefGoogle Scholar
  23. 23.
    Nagy K, Sandoz L, Destaillats F, Schafer O (2012) Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry. J Lipid Res. doi: 10.1194/jlr.D031484 Google Scholar
  24. 24.
    Nagy K, Sandoz L, Destaillats F, Schafer O (2013) Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry. J Lipid Res 54(1):290–305. doi: 10.1194/jlr.D031484 CrossRefGoogle Scholar
  25. 25.
    Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A, Thiery J (2005) Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. J Lipid Res 46(1):21–26. doi: 10.1194/jlr.C400004-JLR200 CrossRefGoogle Scholar
  26. 26.
    Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CRH, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305. doi: 10.1194/jlr.M009449 CrossRefGoogle Scholar
  27. 27.
    Roche_Diagnostics_GmbH (2011) Methodenbeschreibung Triglycerides für cobas c SystemGoogle Scholar
  28. 28.
    Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu Y-H (2007) Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Investig 117(6):1679–1689. doi: 10.1172/jci30565 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Sander
    • 1
    Email author
  • S. Becker
    • 1
    • 2
  • J. Thiery
    • 1
    • 2
  • U. Ceglarek
    • 1
    • 2
  1. 1.Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity Hospital LeipzigLeipzigGermany
  2. 2.LIFE–Leipzig Research Center for Civilization DiseasesUniversity LeipzigLeipzigGermany

Personalised recommendations