Skip to main content
Log in

A Novel Derivatization Method for the Determination of Saisentong in Soil by High-Performance Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel and accurate derivatization method for the determination of saisentong in soil was developed by high-performance liquid chromatography. The derivatization efficiency of saisentong was affected by multiple experimental conditions, including derivatization reagent amount, reaction temperature and time, oscillation rate, and reactant ratio. These conditions were optimized using an orthogonal experimental design. The final derivative was identified by liquid chromatography-tandem mass spectroscopy. The optimum derivatization conditions were as follows: 50 mL of 1.0 mol L−1 sodium thiosulfate-methanol (1:1, v/v), 2 h of heat assistance at 60 °C, and no oscillation. The derivatization efficiency of saisentong reached 70 % under these optimum conditions. The linear calibration ranges of the saisentong derivative were within 2.0–100.0 mg L−1, and the limit of detection and limit of quantification of saisentong were 0.03 and 0.10 mg kg−1, respectively. The average recoveries at three spiked levels ranged from 93.53 to 97.27 % for soil samples with relative standard deviations of 1.38 to 4.62 %. For field experiments, the half-lives of saisentong in soil samples from Guizhou and Hunan were 14.7 and 12.0 days, respectively. The proposed approach can be used to analyze saisentong residues from contaminated soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang L, Wang J, Zhuo GN (2009) Exp Toxicol Pathol 61:453–459

    Article  CAS  Google Scholar 

  2. Lu QM, Chen LH, Lu MH, Chen GN, Zhang L (2010) J Agric Food Chem 58:2763–2770

    Article  CAS  Google Scholar 

  3. Xing JH, He RL, Zhang CB, Chen J (2007) J Zhejiang Agric Sci 5:567–568

    Google Scholar 

  4. Johansson J, Alto P, Skinner WA, Valley P (1973) US 3754027. Chem Abstr 79:137504

    Google Scholar 

  5. Taylor UF, Dyckes DF, Cox JR (1982) Int J Pept Protein Res 19:158–161

    Article  CAS  Google Scholar 

  6. Kuwata S, Watanabe H (1965) Bull Chem Soc Jpn 38:676–677

    Article  CAS  Google Scholar 

  7. Wiejak S, Masiukiewicz E, Rzeszotarska B (2001) Chem Pharm Bull 49:1189–1191

    Article  CAS  Google Scholar 

  8. Sailaja G, Nowshuddin S, Rao MNA (2004) Tetrahedron Lett 45:9297–9298

    Article  CAS  Google Scholar 

  9. Nowshuddin S, Reddy AR (2006) Tetrahedron Lett 47:5159–5161

    Article  CAS  Google Scholar 

  10. Fan DF, Chen XL (1991) Fresenius J Anal Chem 339:434–435

    Article  CAS  Google Scholar 

  11. Zhu XF, Xu Y, Peng D, Zhang Y, Huang TT, Wang JX, Zhou MG (2013) Crop Prot 47:24–29

    Article  CAS  Google Scholar 

  12. Dyachenko SA, Bureneva MI, Papirnik MP, Pesin VG, Dubanova IA (1985) Zh Obshch Khim 55:2603–2607

    CAS  Google Scholar 

  13. Wu YJ, Fu XW, Yang H (2010) Arch Environ Contam Toxicol 61:359–367

    Article  Google Scholar 

  14. Hu XQ, Li Z, Guo Q, Wu M, Zhao H, Zhu YH, Cai XM (2010) J Zhejiang Agric Sci 6:1389–1390

    Google Scholar 

  15. Junk GA, Richard JJ, Grieser MD, Witiak D, Witiak JL, Arguello MD, Vick R, Svec HJ, Fritz JS, Calder GV (1974) J Chromatogr 99:745–762

    Article  CAS  Google Scholar 

  16. Berkane K, Caissie GE, Mallet VN (1977) J Chromatogr 139:386–390

    Article  CAS  Google Scholar 

  17. Mallet VN, Brun GL, MacDonald RN, Berkane K (1978) J Chromatogr 160:81–88

    Article  CAS  Google Scholar 

  18. Gao YH, Xu XJ, Song GX, Hu YM, Cheng HF (2013) Chromatographia 76:1181–1186

    Article  CAS  Google Scholar 

  19. Wu JX, Zhang HY, Wang K, Wang CJ (2014) Environ Monit Assess 186:1195–1202

    Article  CAS  Google Scholar 

  20. Hsueh WL, Liu YL, Fan T (1985) Pestic Sci 16:59–64

    Article  CAS  Google Scholar 

  21. Liu Y, Jia GG, Ling X, Lan N, Zheng YG, Li S, Zhang L, Liu L, Zhang RL, Xue YS (2012) Can J Chem 90:557–559

    Article  CAS  Google Scholar 

  22. Zhang L, Zheng YG, An L, Xue YS, Mou J, Liu L, Liu Y (2011) Chin J Org Chem 31(9):1475–1479

    CAS  Google Scholar 

  23. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Special Fund for Agro-scientific Research in the Public Interest (No. 201203022) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kankan Zhang or Deyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, M., Meng, X. et al. A Novel Derivatization Method for the Determination of Saisentong in Soil by High-Performance Liquid Chromatography. Chromatographia 77, 933–939 (2014). https://doi.org/10.1007/s10337-014-2696-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2696-7

Keywords

Navigation