Skip to main content
Log in

Comparative Response Characterization of a Universal Acoustic Flame Detector for Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The relative response towards a wide variety of hydrocarbons was measured simultaneously in both the acoustic flame detector (AFD) and the flame ionization detector (FID). The compounds examined included alkanes, aromatics, unsaturates, aldehydes, ketones, alcohols, carboxylic acids, and a number of hetero-atomic organic analytes. A very close linear correlation was found between AFD and FID response for these analytes with regression providing an r 2 coefficient of 0.9103. The observed universal AFD response towards hydrocarbons was attributed to a reduction in flame burning velocity through the capture of key propagating species such as hydrogen radicals. While a few minor exceptions to this correlation were observed, the most notable differences occurred for organometallic compounds, which responded 2–3 orders of magnitude more strongly in the AFD than anticipated by their FID response alone. It was found that the metals present in such analytes are directly responsible for generating the greatly increased AFD response observed, which is attributed to their known radical scavenger properties. Results indicate that overall the AFD provides a uniform response towards most hydrocarbons that is qualitatively very similar to that of an FID. For those analytes containing metals or other moieties that may be capable of significantly altering flame burning velocity, an enhanced AFD response is to be anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peaden PA, Fjeldsted JC, Lee ML, Springston SR, Novotny M (1982) Anal Chem 54:1090–1093

    Article  CAS  Google Scholar 

  2. Gere DR (1983) Science 222:253–291

    Article  CAS  Google Scholar 

  3. Chester TL, Pinkston JD (2002) Anal Chem 74:2801–2811

    Article  CAS  Google Scholar 

  4. Anton K, Berger C (1998) Supercritical fluid chromatography with packed columns. Marcel Dekker Inc, New York

    Google Scholar 

  5. Rios A, Zougagh M, de Andres F (2010) Bioanalysis 2:9–25

    Article  CAS  Google Scholar 

  6. De Klerck K, Mangelings D, Vander Heyden Y (2012) J Pharm Biomed Anal 69:77–92

    Article  Google Scholar 

  7. Saito M (2013) J Biosci Bioeng 115:590–599

    Article  CAS  Google Scholar 

  8. Taylor LT (2008) Anal Chem 80:4285–4294

    Article  CAS  Google Scholar 

  9. Berger TA (1997) J Chromatogr A 785:3–33

    Article  CAS  Google Scholar 

  10. Taylor LT (2012) J Chromatogr A 1250:196–204

    Article  CAS  Google Scholar 

  11. Taylor LT (2009) J Supercrit Fluids 47:566–573

    Article  CAS  Google Scholar 

  12. Berger TA, Todd BS (2001) Chromatographia 54:777–781

    Article  CAS  Google Scholar 

  13. Thiébaut D (2012) J Chromatogr A 1252:177–188

    Article  Google Scholar 

  14. Hill HH, McMinn DG (1992) Detectors for capillary chromatography. Wiley, New York

    Google Scholar 

  15. Berry AJ, Ramsey ED, Newby M, Games DE (1996) J Chromatogr Sci 34:245–253

    Article  CAS  Google Scholar 

  16. Strode JTB, Taylor LT (1996) J Chromatogr Sci 34:261–271

    Article  CAS  Google Scholar 

  17. Young CS, Dolan JW (2004) LCGC North Am 22:246–250

    Google Scholar 

  18. Shaodong J, Lee WJ, Ee JW, Park JH, Kwon SW, Lee J (2010) J Pharm Biomed Anal 51:973–978

    Article  Google Scholar 

  19. Hazotte A, Libong D, Matoga M, Chaminade P (2007) J Chromatogr A 1170:52–61

    Article  CAS  Google Scholar 

  20. Lucena R, Cardenas S, Valcarcel M (2007) Anal Bioanal Chem 388:1663–1672

    Article  CAS  Google Scholar 

  21. Thurbide KB, Wentzell PD, Aue WA (1996) Anal Chem 68:2758–2765

    Article  CAS  Google Scholar 

  22. Thurbide KB, Xia Z (2004) Anal Chem 76:5459–5464

    Article  CAS  Google Scholar 

  23. Xia Z, Thurbide KB (2006) J Chromatogr A 1105:180–185

    Article  CAS  Google Scholar 

  24. Mah C, Thurbide KB (2008) J Sep Sci 31:1314–1321

    Article  CAS  Google Scholar 

  25. Mah C, Thurbide KB (2011) J Chromatogr A 1218:362–365

    Article  CAS  Google Scholar 

  26. Vestal ML, Fergusson GJ (1985) Anal Chem 57:2373–2378

    Article  CAS  Google Scholar 

  27. Holm T (1999) J Chromatogr A 842:221–227

    Article  CAS  Google Scholar 

  28. Miller DR, Evers RL, Skinner GB (1963) Combust Flame 7:137–142

    Article  CAS  Google Scholar 

  29. Sevcik J (1976) Detectors in gas chromatography. Elsevier, New York

    Google Scholar 

  30. De Wilde E, Van Tiggelen A (1968) Bull Soc Chim Belges 77:67–76

    Article  Google Scholar 

  31. Hausmann M, Homann KH (1995) Ber Bunsenges Phys Cehm 99:853–862

    Article  CAS  Google Scholar 

  32. Hausmann M, Homann KH (1997) Ber Bunsenges Phys Cehm 101:651–667

    Article  CAS  Google Scholar 

  33. Vetter W, Rosenfelder N (2008) Anal Bioanal Chem 392:489–504

    Article  CAS  Google Scholar 

  34. Shorr LM, Simons J (1994) Chim Oggi 12:9–13

    CAS  Google Scholar 

  35. Linteris GT, Rumminger MD, Babushok VI (2008) Prog Energy Combust Sci 34:288–329

    Article  CAS  Google Scholar 

  36. McCabe RW, Siegl WO, Chun W, Perry J Jr (1992) J Air Waste Manag Assoc 42:1071–1077

    Article  CAS  Google Scholar 

  37. Mishakov IV, Chesnokov VV, Buyanov RA, Pakhomov NA (2001) Kinet Catal 42:543–548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for a Discovery Grant in support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Thurbide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, A.F., Thurbide, K.B. Comparative Response Characterization of a Universal Acoustic Flame Detector for Chromatography. Chromatographia 77, 865–872 (2014). https://doi.org/10.1007/s10337-014-2692-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2692-y

Keywords

Navigation