Skip to main content

HPLC–DAD–FLD Determination of Veterinary Pharmaceuticals in Pharmaceutical Industry Wastewater with Precolumn Derivatization Using Fluorescamine

Abstract

A simple and robust method suitable for routine analysis of pharmaceuticals from different classes in pharmaceutical industry wastewater samples is presented. Seven veterinary pharmaceuticals (antibiotics and anesthetic) were simultaneously isolated from a highly complex wastewater matrix. Target compounds were three sulfonamide antibiotics (sulfaguanidine, sulfadiazine, and sulfamethazine), three fluoroquinolone antibiotics (ciprofloxacin, enrofloxacin, norfloxacin), and one anesthetic, procaine. The investigated compounds were simultaneously pre-concentrated and cleaned up by solid-phase extraction using Strata-X extraction cartridges. The analysis was performed using liquid chromatography (LC) with diode array and fluorescence detectors connected in series to the chromatographic system. LC separation was performed on a C18 modified column (Phenomenex) with a gradient elution of mobile phase (0.1 % acetic acid in water and 0.1 % acetic acid in acetonitrile) in 25 min at 30 °C. Recoveries ranged from 86.9 to 110 % with relative standard deviations below 10.1 %. Method limits of quantification were in the range of 0.005–0.1 μg L−1 depending on the fluorescence intensity after precolumn derivatization by fluorescamine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Petrović M, Hernando MD, Diaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14

    Article  Google Scholar 

  2. Diaz-Cruz S, Barceló D (2004) Occurrence and analysis of selected pharmaceuticals and metabolites as contaminants present in waste waters, sludge and sediments, the handbook of environmental chemistry. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  3. Diaz-Cruz MS, López de Alda MJ, Barceló D (2003) Trends Anal Chem 22:340–351

    CAS  Article  Google Scholar 

  4. Yang S, Cha J, Carlson K (2005) J Chromatogr A 1097:40–53

    CAS  Article  Google Scholar 

  5. Renew JE, Huang CH (2004) J Chromatogr A 1042:113–121

    CAS  Article  Google Scholar 

  6. Diaz-Cruz S, Barcelo D (2005) Trends Anal Chem 24:645–657

    CAS  Article  Google Scholar 

  7. Maudens KE, Zhang G-F, Lambert WE (2004) J Chromatogr A 1047:85–92

    CAS  Article  Google Scholar 

  8. Carretero AS, Cruces-Blanco S, Peinado SF, El Bergmi R, Gutierrez AF (1999) J Pharm Biomed Anal 21:969–974

    Article  Google Scholar 

  9. De Orsi D, Pellegrini M, Marchei E, Nebuloni P, Gallinella B, Scavarelli G, Martufi A, Gagliardi L, Pichini S (2009) J Pharm Biomed 50:362–369

    Article  Google Scholar 

  10. Fernandez-Torres R, Lopez MAB, Consntino MO, Mochon MC (2010) Anal Lett 44:2357–2372

    Article  Google Scholar 

  11. Tuerk J, Reinders M, Dreyer D, Kiffmeyer TK, Schmidt KG, Kuss H-M (2006) J Chromatogr B 831:72–80

    CAS  Article  Google Scholar 

  12. Won SY, Lee CH, Chang HS, Kim SO, Lee SH, Kim DS (2011) Food Control 22:1101–1107

    CAS  Article  Google Scholar 

  13. Wei R, Fe F, Huanf S, Chen M, Wang R (2011) Chemosphere 82:1408–1414

    CAS  Article  Google Scholar 

  14. Garcia-Galan MJ, Diaz-Cruz MS, Barcelo D (2010) Talanta 81:355–366

    CAS  Article  Google Scholar 

  15. Chen L, Zhang X, Xu Y, Du X, Sun X, Sum L, Wang H, Zhao Q, Yu A, Zhang H, Ding L (2010) Anal Chim Acta 662:31–38

    CAS  Article  Google Scholar 

  16. Le-Minh N, Stuetz RM, Khan SJ (2012) Talanta 89:407–416

    CAS  Article  Google Scholar 

  17. Blackwell PA, Lűtzhøft HCH, Ma HPP, Halliing-Sørensen B, Boxall ABA, Kay P (2004) Talanta 64:1058–1064

    CAS  Article  Google Scholar 

  18. Santos JL, Aparicio I, Alonso E, Callejon (2005) Anal Chim Acta 550:116–122

    CAS  Article  Google Scholar 

  19. Ferdig M, Kaleta A, Buchberger W (2005) J Sep Sci 28:1448–1456

    CAS  Article  Google Scholar 

  20. Golet EM, Alder AC, Hartmann A, Ternes TA, Giger W (2001) Anal Chem 73:3632–3638

    CAS  Article  Google Scholar 

  21. Nakata H, Kannan K, Jones PD, Giesy JP (2005) Chemosphere 58:759–766

    CAS  Article  Google Scholar 

  22. Gehring TA, Griffin B, Williams R, Geiseker C, Rushing LG, Siitonen PH (2006) J Chromatogr B 840:132–138

    CAS  Article  Google Scholar 

  23. Babić S, Pavlović DM, Ašperger D, Periša M, Zrnčić M, Horvat AJM, Kaštelan-Macan M (2010) Anal Bioanal Chem 398:1185–1194

    Article  Google Scholar 

  24. Pavlović DM, Babić S, Dolar D, Ašperger D, Košutić K, Horvat AJM, Kaštelan-Macan M (2010) J Sep Sci 33:258–267

    Article  Google Scholar 

  25. Babić S, Ašperger D, Mutavdžić D, Horvat AJM, Kaštelan-Macan M (2006) Talanta 70:732–738

    Article  Google Scholar 

  26. Babić S, Mutavdžić D, Ašperger D, Horvat AJM, Kaštelan-Macan M (2007) Chromatographia 65:105–110

    Google Scholar 

  27. Posyniak A, Zmudzki J, Mitrowska K (2005) J Chromatogr A 1087:259–264

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Croatian Ministry of Science, Education, and Sports Project: 125-1253008-1350, Development of advanced analytical methods for pharmaceuticals determination in the environment, and a bilateral project HR-SLO: Determination of toxicity and physico-chemical properties of pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Ašperger.

Additional information

Published in the special paper collection 19th International Symposium on Separation Sciences with guest editors Tomislav Bolanča and Bogusław Buszewski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ašperger, D., Tišler, V., Zrnčić, M. et al. HPLC–DAD–FLD Determination of Veterinary Pharmaceuticals in Pharmaceutical Industry Wastewater with Precolumn Derivatization Using Fluorescamine. Chromatographia 77, 1059–1066 (2014). https://doi.org/10.1007/s10337-014-2685-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2685-x

Keywords

  • High-performance liquid chromatography
  • Fluorescence detection
  • Derivatization
  • Fluorescamine
  • Pharmaceuticals
  • Wastewater