Skip to main content
Log in

Determination of Seven Odorants in Purified Water Among Worldwide Brands by HS-SPME Coupled to GC–MS

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Musty and earthy odors dramatically influence the esthetic quality and consumer acceptability of drinking water. This study was conducted to obtain a sensitive method for simultaneous analysis of seven odors, including geosmin (GSM), 2-methylisoborneol (2-MIB), 2-isopropyl-3-methoxy pyrazine (IPMP), dimethyl trisulfide (DMTS), 2,4,6-trichloroanisole (2,4,6-TCA), β-cyclocitral, and β-ionone, in water by applying headspace solid phase micro-extraction coupled to gas chromatography with mass spectrometry. Moreover, the proposed method was applied to obtain preliminary understanding of the levels of these odorants in purified water among various brands in the world, and to try to find out the potential causes when the odorants appeared in purified water. The target compounds could be separated and analyzed effectively within 23 min, and the GSM and DMTS could be detected in all brands of chosen countries, while the IPMP, β-ionone and 2,4,6-TCA cannot be observed in the above brands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Izaguirre G, Taylor WD (2004) A guide to geosmin- and MIB-producing cyanobacteria in the United States. Water Sci Technol 49:19–24

    CAS  Google Scholar 

  2. Gebber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938

    Google Scholar 

  3. Peter A, Koster O, Schildknecht A, von Gunten U (2009) Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. Water Res 43:2191–2200

    Article  CAS  Google Scholar 

  4. Yang M, Yu JW, Li ZL, Guo ZH, Burch M, Lin TF (2008) Taihu Lake not to blame for Wuxi’s woes. Science 319:158

    Article  CAS  Google Scholar 

  5. Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368

    Article  CAS  Google Scholar 

  6. Mallevialle J, Suffet IH (eds) (1987) Identification and treatment of tastes and odors in drinking water. American Water Works Association, Denver

    Google Scholar 

  7. Davies JM, Roxborough M, Mazumder A (2004) Origins and implications of drinking water odours in lakes and reservoirs of British Columbia, Canada. Water Res 38:1900–1910

    Article  CAS  Google Scholar 

  8. Mackey ED, Baribeau H, Crozes GF, Suffet IH, Piriou P (2004) Public thresholds for chlorinous flavors in US tap water. Water Sci Technol 49:335–340

    CAS  Google Scholar 

  9. Freuze I, Brosillon S, Herman D, Laplanche A, Democrate C, Cavard J (2004) Odorous products of the chlorination of phenylalanine in water: formation, evolution, and quantification. Environ Sci Technol 38:4134–4139

    Article  CAS  Google Scholar 

  10. Deng X, Liang G, Chen J, Qi M, Xie P (2011) Simultaneous determination of eight common odors in natural water body using automatic purge and trap coupled to gas chromatography with mass spectrometry. J Chromatogr A 1218:3791–3798

    Article  CAS  Google Scholar 

  11. Liu HW, Liu YT, Wu BZ, Nian HC, Chen HJ, Chiu KH, Lo JG (2009) Process sampling module coupled with purge and trap-GC-FID for in situ auto-monitoring of volatile organic compounds in wastewater. Talanta 80:903–908

    Article  CAS  Google Scholar 

  12. Cortada C, Vidal L, Canals A (2011) Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid–liquid microextraction coupled to gas chromatography-mass spectrometry. J Chromatogr A 1218:17–22

    Article  CAS  Google Scholar 

  13. Madrera RR, Valles BS (2011) Determination of volatile compounds in apple pomace by stir bar sorptive extraction and gas chromatography-mass spectrometry (SBSE-GC-MS). J Food Sci 76:C1326–C1334

    Article  CAS  Google Scholar 

  14. Chen B, Wang W, Huang Y (2012) Cigarette filters as adsorbents of solid-phase extraction for determination of fluoroquinolone antibiotics in environmental water samples coupled with high-performance liquid chromatography. Talanta 88:237–243

    Article  CAS  Google Scholar 

  15. Lopez R, Aznar M, Cacho J, Ferreira V (2002) Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J Chromatogr A 966:167–177

    Article  CAS  Google Scholar 

  16. Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217:2521–2532

    Article  CAS  Google Scholar 

  17. Lloyd SW, Lea JM, Zimba PV, Grimm CC (1998) Rapid analysis of geosmin and 2-methylisoborneol in water using solid phase micro extraction procedures. Water Res 32:2140–2146

    Article  CAS  Google Scholar 

  18. Salemi A, Lacorte S, Bagheri H, Barcelo D (2006) Automated trace determination of earthy-musty odorous compounds in water samples by on-line purge-and-trap-gas chromatography-mass spectrometry. J Chromatogr A 1136:170–175

    Article  CAS  Google Scholar 

  19. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  20. Watson SB, Brownlee B, Satchwill T, Hargesheimer EE (2000) Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Water Res 34:2818–2828

    Article  CAS  Google Scholar 

  21. Peng SF, Ding Z, Xia WW, Zheng H, Xia YT, Chen XD (2013) Orthogonal design study on factors affecting the determination of common odors in water samples by headspace solid-phase microextraction coupled to GC/MS. J Anal Methods Chem 2013:340658

    Article  Google Scholar 

  22. Ding Z, Peng SF, Xia WW, Chen XD, Yin LH (2014) Analysis of five earthy-musty odorants in environmental water by HS-SPME/GC-MS. Int J Anal Chem 2014:1–11

    Article  Google Scholar 

  23. Dzialowski AR, Smith VH, Huggins DG, DeNoyelles F, Lim N, Baker DS, Beury JH (2009) Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Res 43:2829–2840

    Article  CAS  Google Scholar 

  24. Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture 280:5–20

    Article  CAS  Google Scholar 

  25. Suffet IH, Corado A, Chou D, McGuire MJ, Butterworth S (1996) AWWA taste and odor survey. J Am Water Works Assoc 88:168–180

    CAS  Google Scholar 

  26. Westerhoff P, Rodriguez-Hernandez M, Baker L, Sommerfeld M (2005) Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Res 39:4899–4912

    Article  CAS  Google Scholar 

  27. Maruyama FT (1970) Identification of dimethyl trisulfide as a major aroma component of cooked brassicaceous vegetables. J Food Sci 35:540–543

    Article  CAS  Google Scholar 

  28. Kimbaris AC, Siatis NG, Daferera DJ, Tarantilis PA, Pappas CS, Polissiou MG (2006) Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrason Sonochem 13:54–60

    Article  CAS  Google Scholar 

  29. Ron G, Buttery Dan G, Guadagni Louisa C, Ling Richard M, Seifert Werner Lipton (1976) Additional volatile components of cabbage, broccoli, and cauliflower. J Agric Food Chem 24:829–832

    Article  Google Scholar 

  30. Chen CC, Ho CT (1986) Identification of sulfurous compounds of Shiitake mushroom (Lentinus edodes Sing.). J Agric Food Chem 34:830–833

    Article  CAS  Google Scholar 

  31. Derikx PJ, Op DCH, van der Drift C, van Griensven LJ, Vogels GD (1990) Odorous sulfur compounds emitted during production of compost used as a substrate in mushroom cultivation. Appl Environ Microbiol 56:176–180

    CAS  Google Scholar 

  32. Miller AR, Scanlan RA, Lee JS, Libbey LM (1973) Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas putrefaciens, Pseudomonas fluorescens, and an Achromobacter species. Appl Microbiol 26:18–21

    CAS  Google Scholar 

  33. Parliment TH, Kolor MG, Rizzo DJ (1982) Volatile components of Limburger cheese. J Agric Food Chem 30:1006–1008

    Article  CAS  Google Scholar 

  34. Yang WT, Min DB (1994) Dynamic headspace analyses of volatile compounds of cheddar and swiss cheese during ripening. J Food Sci 59:1309–1312

    Article  CAS  Google Scholar 

  35. Statheropoulos M, Agapiou A, Spiliopoulou C, Pallis GC, Sianos E (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ 385:221–227

    Article  CAS  Google Scholar 

  36. Shirasu M, Nagai S, Hayashi R, Ochiai A, Touhara K (2009) Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds. Biosci Biotechnol Biochem 73:2117–2120

    Article  CAS  Google Scholar 

  37. Moore JG, Jessop LD, Osborne DN (1987) Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Gastroenterology 93:1321–1329

    CAS  Google Scholar 

  38. Pickering GJ, Karthik A, Inglis D, Sears M, Ker K (2007) Determination of ortho- and retronasal detection thresholds for 2-isopropyl-3-methoxypyrazine in wine. J Food Sci 72:S468–S472

    Article  CAS  Google Scholar 

  39. Pickering GJ, Karthik A, Inglis D, Sears M, Ker K (2008) Detection thresholds for 2-isopropyl-3-methoxypyrazine in concord and niagara grape juice. J Food Sci 73:S262–S266

    Article  CAS  Google Scholar 

  40. Riu M, Mestres M, Busto O, Guasch J (2002) Determination of 2,4,6-trichloroanisole in wines by headspace solid-phase microextraction and gas chromatography-electron-capture detection. J Chromatogr A 977:1–8

    Article  CAS  Google Scholar 

  41. Evans TJ, Butzke CE, Ebeler SE (1997) Analysis of 2,4,6-trichloroanisole in wines using solid-phase microextraction coupled to gas chromatography-mass spectrometry. J Chromatogr A 786:293–298

    Article  CAS  Google Scholar 

  42. Nyström A, Grimvall A, Krantz-Rüilcker C (1992) Drinking Water Off-Flavour Caused by 2,4,6-Trichloroanisole. Water Sci Technol 25:241–249

    Google Scholar 

  43. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J 40:882–892

    Article  CAS  Google Scholar 

  44. Lewinsohn E, Sitrit Y, Bar E (2005) Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Technol 16:407–415

    Article  CAS  Google Scholar 

  45. SIDS Initial Assessment Report for SIAM 20, pp 8–15. Paris, (2004)

Download references

Acknowledgments

This study was jointly supported by Science and Technology Supporting Project of Jiangsu Province, China (BE2011797), Project for Medical Research by Jiangsu Provincial Health Department (H201024), Medical Innovation Team and Academic Pacemaker of Jiangsu Province (LJ201129), and Specialized Project for Scientific Research from Industry of Health Public Welfare (201002001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Ding or Xiaodong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Ding, Z., Zhao, L. et al. Determination of Seven Odorants in Purified Water Among Worldwide Brands by HS-SPME Coupled to GC–MS. Chromatographia 77, 729–735 (2014). https://doi.org/10.1007/s10337-014-2676-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2676-y

Keywords

Navigation