Skip to main content
Log in

Enantioseparation of Phenylsuccinic Acid Enantiomers Using Aqueous Two-Phase Flotation and Their Determination by HPLC and UV Detection

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Aqueous two-phase flotation (ATPF) is especially applicable to bioseparation. However, there is no previous work reporting on its application in enantioseparation. Using phenylsuccinic acid (H2A) as the model enantiomers, ATPF was first introduced into the field of chiral separation. The contributions of a series of ATPF systems to the enantioseparation were investigated. The results indicated that an appropriate increase in the amount of phase-forming components and a decrease in pH values (from 5.5 to 2) are both beneficial for the enantioseparation. Enantioselective flotation and partitioning behavior are mainly dependent on pH values of the solutions, types, and concentrations of chiral selectors. Furthermore, salt, PEG, flow rates of air, and flotation time also have some effects on the enantioseparation. Under the optimal conditions, the enantioselectivity was calculated in terms of the separation factor (α) and enantiomer excess (e.e. %) as 1.99 and 23.49 %, respectively. Finally, the most reasonable mechanisms for H2A enantioseparation in ATPF system have been proposed. An ATPF system composed of PEG2000/(NH4)2SO4 was proved to have the best ability for the separation of H2A enantiomers. The explorations in our study will further enrich the enantioseparation methods and pave the way for the application of ATPF in the enantioseparation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horvath JD, Koritnik A, Kamakoti P, Sholl DS, Gellman AJ (2004) J Am Chem Soc 126:14988–14994

    Article  CAS  Google Scholar 

  2. Maier NM, Franco P, Lindner W (2001) J Chromatogr A 906:3–33

    Article  CAS  Google Scholar 

  3. Lee NH, Frank CW (2002) Polymer 43:6255–6262

    Article  CAS  Google Scholar 

  4. Ginesta X, Pericas MA, Riera A (2002) Tetrahedron Lett 43:779–782

    Article  CAS  Google Scholar 

  5. Tong S, Yan J, Guan YX, Lu Y (2011) J Chromatogr A 1218:5602–5608

    Article  CAS  Google Scholar 

  6. Tang KW, Song LT, Liu YB, Pan Y, Jiang XY (2010) Chem Eng J 158:411–417

    Article  CAS  Google Scholar 

  7. Schuur B, Winkelman JGM, de Vries JG, Heeres HJ (2010) Chem Eng Sci 65:4682–4690

    Article  CAS  Google Scholar 

  8. Zhang P, Cai J, Tang K, Liu Y, Liu Y, Yan J (2012) Chem Eng Process 61:16–22

    Article  CAS  Google Scholar 

  9. Tang K, Luo J, Zhang P, Zhou C, Yi J (2013) Chem Eng Res Des 91:919–924

    Article  CAS  Google Scholar 

  10. Bi PY, Dong HR, Yuan YC (2010) Sep Purif Technol 75:402–406

    Article  CAS  Google Scholar 

  11. Bi PY, Li DQ, Dong HR (2009) Sep Purif Technol 69:205–209

    Article  CAS  Google Scholar 

  12. Li M, Dong HR (2010) Sep Purif Technol 73:208–212

    Article  CAS  Google Scholar 

  13. Pakhale SV, Vetal MD, Rathod VK (2013) Sep Sci Technol 48:984–989

    Article  CAS  Google Scholar 

  14. Chen X, Yang W, Jiang X, Jiao F, Tian L (2012) Tetrahedron Asymmetry 23:1227–1233

    Article  CAS  Google Scholar 

  15. Wang LJ, Hu SQ, Guo QL, Yang GL, Chen XG (2011) J Chromatogr A 1218:1300–1309

    Article  CAS  Google Scholar 

  16. Tan L, Long Y, Jiao F, Chen X (2011) J Iran Chem Soc 8:889–896

    Article  CAS  Google Scholar 

  17. Tang KW, Miao JB, Zhou T, Liu YB (2011) Chinese J Chem Eng 19:397–403

    Article  CAS  Google Scholar 

  18. Xing JM, Li FF (2012) J Chem Technol Biotechnol 87:346–350

    Article  CAS  Google Scholar 

  19. Varga G, Fodor G, Ilisz I, Szemán J, Visy J, Szente L, Péter A (2012) J Pharm Biomed 70:71–76

    Article  CAS  Google Scholar 

  20. Man RL, Wang ZH, Tang KW (2009) J Cent South Univ Technol 16:201–205

    Article  CAS  Google Scholar 

  21. Chen XQ, Dong QL, Yu JQ, Jiao FP (2013) J Chem Technol Biotechnol 88:1545–1550

    Article  CAS  Google Scholar 

  22. Tan ZJ, Li FF, Xu XL (2012) Bioprocess Biosyst Eng 36:1105–1113

    Article  Google Scholar 

  23. Zafarani-Moattar MT, Hamzehzadeh S (2005) Calphad 29:1–6

    Article  CAS  Google Scholar 

  24. Bi PY, Dong HR, Dong J (2010) J Chromatogr A 1217:2716–2725

    Article  CAS  Google Scholar 

  25. Bayati F, Shayegan J, Noorjahan A (2011) J Pet Sci Eng 80:26–31

    Article  CAS  Google Scholar 

  26. Dong HR, Bi PY, Wang SH (2005) Anal Lett 38:257–270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the China National Natural Science Foundation (No. 21276282) and Hunan National Natural Science Foundation (No. 14JJ2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqing Chen or Feipeng Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, J., Yang, W., Chen, X. et al. Enantioseparation of Phenylsuccinic Acid Enantiomers Using Aqueous Two-Phase Flotation and Their Determination by HPLC and UV Detection. Chromatographia 77, 679–685 (2014). https://doi.org/10.1007/s10337-014-2668-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2668-y

Keywords

Navigation