Development of Gradient Retention Model in Ion Chromatography. Part II: Artificial Intelligence QSRR Approach

Abstract

Methodology that integrates traditional QSRR modeling with transfer of information from isocratic to gradient environment was presented in the previous paper as an efficient new chromatographic approach. The previous research included application of conventional regression techniques that resulted in relatively high prediction errors. Also, it was shown that prediction error of the integrated model was mostly caused by prediction of the QSRR models. Therefore, artificial intelligence was applied in this work in order to improve the prediction ability of QSRR-based model: Artificial neural networks were selected for QSRR modeling, while genetic algorithm was used for the selection of optimal descriptors. Both artificial neural networks and genetic algorithm were optimized in order to build accurate and reliable QSRR models. Selection function, crossover function, and percentage of genes’ mutations were varied in case of genetic algorithm, while artificial neural networks were optimized by means of different network type, training algorithm and number of neurons in hidden layer. During retention modeling, basic QSRR models developed for specific eluent strength were upgraded to isocratic, and thereafter to gradient retention model. None of the three developed models showed systematic errors, and the obtained predictions (RMSEP 11.66, 10.67, and 7.10 %, respectively) indicated significant improvement from the results presented in previous paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kaliszan R (1997) Structure and retention in chromatography. A chemometric approach. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  2. 2.

    Kaliszan R, Osmialowski K, Tomellini SA, Hsu S-H, Fazio SD, Hartwick RA (1986) J Chromatogr A 352:141–155

    CAS  Article  Google Scholar 

  3. 3.

    Kaliszan R, Nasal A, Turowski M (1996) J Chromatogr A 722:25–32

    CAS  Article  Google Scholar 

  4. 4.

    Jiskra J, Claessens HA, Cramers CA, Kaliszan R (2002) J Chromatogr A 977:193–206

    CAS  Article  Google Scholar 

  5. 5.

    Michel M, Bączek T, Studzińska S, Bodzioch K, Jonsson T, Kaliszan R, Buszewski B (2007) J Chromatogr A 1175:49–54

    CAS  Article  Google Scholar 

  6. 6.

    Bączek T, Bodzioch K, Michalska E, Kaliszan R (2008) Chromatographia 68:161–166

    Article  Google Scholar 

  7. 7.

    Garkani-Nejad Z (2009) Chromatographia 70:869–874

    CAS  Article  Google Scholar 

  8. 8.

    Bodzioch K, Bączek T, Kaliszan R, Vander Heyden Y (2009) J Pharmaceut Biomed Anal 50:563–569

    CAS  Article  Google Scholar 

  9. 9.

    Ghavami R, Faham S (2010) Chromatographia 72:893–903

    CAS  Article  Google Scholar 

  10. 10.

    Studzińska S, Molíková M, Kosobucki P, Jandera P, Buszewski B (2011) Chromatographia 73:S35–S44

    Article  Google Scholar 

  11. 11.

    Nasal A, Payer K, Haber P, Forgacs E, Cserhati T, Kaliszan R (1998) LC GC Int 11:240–252

    Google Scholar 

  12. 12.

    Kaliszan R, van Straten MA, Markuszewski M, Cramers CA, Claessens HA (1999) J Chromatogr A 855:455–486

    CAS  Article  Google Scholar 

  13. 13.

    Fatemi MH, Abraham MH, Poole CF (2008) Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. J Chromatogr A 1190:241–252

    CAS  Article  Google Scholar 

  14. 14.

    Baczek T, Kaliszan R (2002) J Chromatogr A 962:41–55

    CAS  Article  Google Scholar 

  15. 15.

    Baczek T, Kaliszan R (2003) J Chromatogr A 987:29–37

    CAS  Article  Google Scholar 

  16. 16.

    Bodzioch K, Durand A, Kaliszan R, Bączek T, Vander Heyden Y (2010) Talanta 81:1711–1718

    CAS  Article  Google Scholar 

  17. 17.

    Bolanča T, Cerjan-Stefanović Š, Luša M, Rogošić M, Ukić Š (2006) J Chromatogr A 1121:228–235

    Article  Google Scholar 

  18. 18.

    Ukić Š, Novak M, Žuvela P, Avdalović N, Liu Y, Buszewski B, Bolanča T (2014) Chromatographia. doi:10.1007/s10337-014-2653-5

  19. 19.

    Vivó-Truyols G, Torres-Lapasió JR, García-Alvarez-Coque MC (2001) Chemometr Intell Lab Syst 59:89–106

    Article  Google Scholar 

  20. 20.

    Quirino WG, Teixeira KC, Legnani C, Calil VL, Messer B, Vilela Neto OP, Pacheco MAC, Cremona M (2009) Thin Solid Films 518:1382–1385

    CAS  Article  Google Scholar 

  21. 21.

    Rajeswari K, Vaithiyanathan V, Neelakantan TR (2012) Procedia Eng 41:1818–1823

    Article  Google Scholar 

  22. 22.

    Jung S, Kwon S-D (2013) Appl Energ 111:778–790

    Article  Google Scholar 

  23. 23.

    Fedele R, Maier G, Miller B (2005) Struct Infrastruct E 1:165–180

    Article  Google Scholar 

  24. 24.

    Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    Google Scholar 

  25. 25.

    Tagliaferri R, Longo G, Milano L, Acernese F, Barone F, Ciaramella A, De Rosa R, Donalek C, Eleuteri A, Raiconi G, Sessa S, Staiano A, Volpicelli A (2003) Neural Netw 16:297–319

    Article  Google Scholar 

  26. 26.

    Kröse B, van der Smagt P (1996) An introduction to neural networks, 5th edn. The University of Amsterdam, Amsterdam

    Google Scholar 

  27. 27.

    Unay D (2006) Multispectral image processing and pattern recognition techniques for quality inspection of apple fruits. Presses universitaires de Louvain, Louvain-la-Neuve

    Google Scholar 

  28. 28.

    Tham SY, Agatonovic-Kustrin A (2002) J Pharmaceut Biomed Anal 28:581–590

    CAS  Article  Google Scholar 

  29. 29.

    Thermo Fisher Scientific (2011) Product manual CarboPac PA20. http://www.dionex.com/en-us/webdocs/4378-Man-031884-05-CarboPac-PA20-Jul11.pdf. Accessed 14 Jan 2014

  30. 30.

    Basumallick L, Rohrer J (2012) Thermo Fisher Scientific Application Note 282. http://www.dionex.com/en-us/webdocs/113489-AN282-IC-Biofuel-Sugars-03May2012-LPN2876-R2.pdf. Accessed 14 Jan 2014

  31. 31.

    Bolanča T, Cerjan-Stefanović Š, Ukić Š, Rogošić M, Luša M (2009) J Liq Chromatogr Relat Technol 32:1373–1391

    Article  Google Scholar 

  32. 32.

    Ukić Š, Rogošić M, Novak M, Šimović E, Tišler V, Bolanča T (2013) J Anal Methods Chem 2013. doi:10.1155/2013/549729

Download references

Acknowledgments

Generous support and help from Thermo Fisher Scientific Corporation is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Šime Ukić.

Additional information

Published in the special paper collection 19th International Symposium on Separation Sciences with guest editors Tomislav Bolanča and Bogusław Buszewski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ukić, Š., Novak, M., Vlahović, A. et al. Development of Gradient Retention Model in Ion Chromatography. Part II: Artificial Intelligence QSRR Approach. Chromatographia 77, 997–1007 (2014). https://doi.org/10.1007/s10337-014-2654-4

Download citation

Keywords

  • Ion chromatography
  • QSRR
  • Artificial intelligence
  • Gradient retention model