Advertisement

Chromatographia

, Volume 77, Issue 15–16, pp 997–1007 | Cite as

Development of Gradient Retention Model in Ion Chromatography. Part II: Artificial Intelligence QSRR Approach

  • Šime UkićEmail author
  • Mirjana Novak
  • Ana Vlahović
  • Nebojša Avdalović
  • Yan Liu
  • Bogusław Buszewski
  • Tomislav Bolanča
Original

Abstract

Methodology that integrates traditional QSRR modeling with transfer of information from isocratic to gradient environment was presented in the previous paper as an efficient new chromatographic approach. The previous research included application of conventional regression techniques that resulted in relatively high prediction errors. Also, it was shown that prediction error of the integrated model was mostly caused by prediction of the QSRR models. Therefore, artificial intelligence was applied in this work in order to improve the prediction ability of QSRR-based model: Artificial neural networks were selected for QSRR modeling, while genetic algorithm was used for the selection of optimal descriptors. Both artificial neural networks and genetic algorithm were optimized in order to build accurate and reliable QSRR models. Selection function, crossover function, and percentage of genes’ mutations were varied in case of genetic algorithm, while artificial neural networks were optimized by means of different network type, training algorithm and number of neurons in hidden layer. During retention modeling, basic QSRR models developed for specific eluent strength were upgraded to isocratic, and thereafter to gradient retention model. None of the three developed models showed systematic errors, and the obtained predictions (RMSEP 11.66, 10.67, and 7.10 %, respectively) indicated significant improvement from the results presented in previous paper.

Keywords

Ion chromatography QSRR Artificial intelligence Gradient retention model 

Notes

Acknowledgments

Generous support and help from Thermo Fisher Scientific Corporation is gratefully acknowledged.

References

  1. 1.
    Kaliszan R (1997) Structure and retention in chromatography. A chemometric approach. Harwood Academic Publishers, AmsterdamGoogle Scholar
  2. 2.
    Kaliszan R, Osmialowski K, Tomellini SA, Hsu S-H, Fazio SD, Hartwick RA (1986) J Chromatogr A 352:141–155CrossRefGoogle Scholar
  3. 3.
    Kaliszan R, Nasal A, Turowski M (1996) J Chromatogr A 722:25–32CrossRefGoogle Scholar
  4. 4.
    Jiskra J, Claessens HA, Cramers CA, Kaliszan R (2002) J Chromatogr A 977:193–206CrossRefGoogle Scholar
  5. 5.
    Michel M, Bączek T, Studzińska S, Bodzioch K, Jonsson T, Kaliszan R, Buszewski B (2007) J Chromatogr A 1175:49–54CrossRefGoogle Scholar
  6. 6.
    Bączek T, Bodzioch K, Michalska E, Kaliszan R (2008) Chromatographia 68:161–166CrossRefGoogle Scholar
  7. 7.
    Garkani-Nejad Z (2009) Chromatographia 70:869–874CrossRefGoogle Scholar
  8. 8.
    Bodzioch K, Bączek T, Kaliszan R, Vander Heyden Y (2009) J Pharmaceut Biomed Anal 50:563–569CrossRefGoogle Scholar
  9. 9.
    Ghavami R, Faham S (2010) Chromatographia 72:893–903CrossRefGoogle Scholar
  10. 10.
    Studzińska S, Molíková M, Kosobucki P, Jandera P, Buszewski B (2011) Chromatographia 73:S35–S44CrossRefGoogle Scholar
  11. 11.
    Nasal A, Payer K, Haber P, Forgacs E, Cserhati T, Kaliszan R (1998) LC GC Int 11:240–252Google Scholar
  12. 12.
    Kaliszan R, van Straten MA, Markuszewski M, Cramers CA, Claessens HA (1999) J Chromatogr A 855:455–486CrossRefGoogle Scholar
  13. 13.
    Fatemi MH, Abraham MH, Poole CF (2008) Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. J Chromatogr A 1190:241–252CrossRefGoogle Scholar
  14. 14.
    Baczek T, Kaliszan R (2002) J Chromatogr A 962:41–55CrossRefGoogle Scholar
  15. 15.
    Baczek T, Kaliszan R (2003) J Chromatogr A 987:29–37CrossRefGoogle Scholar
  16. 16.
    Bodzioch K, Durand A, Kaliszan R, Bączek T, Vander Heyden Y (2010) Talanta 81:1711–1718CrossRefGoogle Scholar
  17. 17.
    Bolanča T, Cerjan-Stefanović Š, Luša M, Rogošić M, Ukić Š (2006) J Chromatogr A 1121:228–235CrossRefGoogle Scholar
  18. 18.
    Ukić Š, Novak M, Žuvela P, Avdalović N, Liu Y, Buszewski B, Bolanča T (2014) Chromatographia. doi: 10.1007/s10337-014-2653-5
  19. 19.
    Vivó-Truyols G, Torres-Lapasió JR, García-Alvarez-Coque MC (2001) Chemometr Intell Lab Syst 59:89–106CrossRefGoogle Scholar
  20. 20.
    Quirino WG, Teixeira KC, Legnani C, Calil VL, Messer B, Vilela Neto OP, Pacheco MAC, Cremona M (2009) Thin Solid Films 518:1382–1385CrossRefGoogle Scholar
  21. 21.
    Rajeswari K, Vaithiyanathan V, Neelakantan TR (2012) Procedia Eng 41:1818–1823CrossRefGoogle Scholar
  22. 22.
    Jung S, Kwon S-D (2013) Appl Energ 111:778–790CrossRefGoogle Scholar
  23. 23.
    Fedele R, Maier G, Miller B (2005) Struct Infrastruct E 1:165–180CrossRefGoogle Scholar
  24. 24.
    Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New YorkGoogle Scholar
  25. 25.
    Tagliaferri R, Longo G, Milano L, Acernese F, Barone F, Ciaramella A, De Rosa R, Donalek C, Eleuteri A, Raiconi G, Sessa S, Staiano A, Volpicelli A (2003) Neural Netw 16:297–319CrossRefGoogle Scholar
  26. 26.
    Kröse B, van der Smagt P (1996) An introduction to neural networks, 5th edn. The University of Amsterdam, AmsterdamGoogle Scholar
  27. 27.
    Unay D (2006) Multispectral image processing and pattern recognition techniques for quality inspection of apple fruits. Presses universitaires de Louvain, Louvain-la-NeuveGoogle Scholar
  28. 28.
    Tham SY, Agatonovic-Kustrin A (2002) J Pharmaceut Biomed Anal 28:581–590CrossRefGoogle Scholar
  29. 29.
    Thermo Fisher Scientific (2011) Product manual CarboPac PA20. http://www.dionex.com/en-us/webdocs/4378-Man-031884-05-CarboPac-PA20-Jul11.pdf. Accessed 14 Jan 2014
  30. 30.
    Basumallick L, Rohrer J (2012) Thermo Fisher Scientific Application Note 282. http://www.dionex.com/en-us/webdocs/113489-AN282-IC-Biofuel-Sugars-03May2012-LPN2876-R2.pdf. Accessed 14 Jan 2014
  31. 31.
    Bolanča T, Cerjan-Stefanović Š, Ukić Š, Rogošić M, Luša M (2009) J Liq Chromatogr Relat Technol 32:1373–1391CrossRefGoogle Scholar
  32. 32.
    Ukić Š, Rogošić M, Novak M, Šimović E, Tišler V, Bolanča T (2013) J Anal Methods Chem 2013. doi: 10.1155/2013/549729

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Šime Ukić
    • 1
    Email author
  • Mirjana Novak
    • 1
  • Ana Vlahović
    • 1
  • Nebojša Avdalović
    • 2
  • Yan Liu
    • 2
  • Bogusław Buszewski
    • 3
  • Tomislav Bolanča
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Thermo Fisher ScientificSunnyvaleUSA
  3. 3.Department of Environmental Chemistry and Bioanalytics, Faculty of ChemistryNicolaus Copernicus UniversityTorunPoland

Personalised recommendations