Advertisement

Chromatographia

, Volume 77, Issue 15–16, pp 985–996 | Cite as

Development of Gradient Retention Model in Ion Chromatography. Part I: Conventional QSRR Approach

  • Šime UkićEmail author
  • Mirjana Novak
  • Petar Žuvela
  • Nebojša Avdalović
  • Yan Liu
  • Bogusław Buszewski
  • Tomislav Bolanča
Original

Abstract

New retention methodology that integrates the conventional quantitative structure-retention relationship (QSRR) approach and gradient retention modeling based on isocratic retention data is developed and presented in this paper. Such an integrated approach removes the general QSRR limitation of highly predefined application conditions (i.e., QSRR are generally applicable only under the conditions used during model development) and allows the prediction of retentions over a wide range of different elution conditions (practically for any isocratic or gradient elution profile). At the same time, it retains the ability to predict retention of components unknown to the model, i.e., the components that have not been used in modeling. Ion-exchange chromatography (IC) analysis of carbohydrates was selected as modeling environment. Three regression techniques were applied and compared during QSRR modeling, namely: stepwise multiple linear regression, partial least squares (PLS), and uninformative variable elimination–PLS regression. The obtained prediction results of the best QSRR model (root-mean-square error of prediction = 22.69 %) were similar to those found in the literature. The upgrade from QSRR to the integrated model did not diminish the predictive ability of the model, indicating an excellent potential of the developed methodology not only in IC but also in chromatography in general.

Keywords

Ion chromatography QSRR Gradient retention model Stepwise MLR PLS UVE–PLS 

Notes

Acknowledgments

Generous support and help of Thermo Fisher Scientific Corporation is gratefully acknowledged.

References

  1. 1.
    Héberger K (2007) J Chromatogr A 1158:273–305CrossRefGoogle Scholar
  2. 2.
    Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, WashingtonGoogle Scholar
  3. 3.
    Plenis A, Konieczna L, Miękus N, Bączek T (2013) Chromatographia 76:255–265CrossRefGoogle Scholar
  4. 4.
    Durcekova T, Boronova K, Mocak J, Lehotay J, Cizmarik J (2012) J Pharm Biomed Anal 59:209–216CrossRefGoogle Scholar
  5. 5.
    Qin L-T, Liu S–S, Liu H-L, Tong J (2009) J Chromatogr A 1216:5302–5312CrossRefGoogle Scholar
  6. 6.
    Bączek T, Bodzioch K, Michalska E, Kaliszan R (2008) Chromatographia 68:161–166CrossRefGoogle Scholar
  7. 7.
    Ruiz-Angel MJ, Carda-Broch S, García-Alvarez-Coque MC, Berthod A (2005) J Chromatogr A 1063:25–34CrossRefGoogle Scholar
  8. 8.
    Righezza M, Hassani A, Meklati BY, Chrétien JR (1996) J Chromatogr A 723:77–91CrossRefGoogle Scholar
  9. 9.
    Bodzioch K, Durand A, Kaliszan R, Bączek T, Vander Heyden Y (2010) Talanta 81:1711–1718CrossRefGoogle Scholar
  10. 10.
    Funar-Timofei S, Fabian WMF, Simu GM, Suzuki T (2006) Croat Chem Acta 79:227–236Google Scholar
  11. 11.
    Goryński K, Bojko B, Nowaczyk A, Buciński A, Pawliszyn J, Kaliszan R (2013) Anal Chim Acta 797:13–19CrossRefGoogle Scholar
  12. 12.
    Cirera-Domènech E, Estrada-Tejedor R, Broto-Puig F, Teixidó J, Gassiot-Matas M, Comellas L, Lliberia JL, Méndez A, Paz-Estivill S, Delgado-Ortiz MR (2013) J Chromatogr A 1276:65–77CrossRefGoogle Scholar
  13. 13.
    Aschi M, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 582:235–242CrossRefGoogle Scholar
  14. 14.
    Golubović J, Protić A, Zečević M, Otašević B, Mikić M, Živanović LJ (2012) Talanta 100:329–337CrossRefGoogle Scholar
  15. 15.
    Bolanča T, Cerjan-Stefanović Š, Luša M, Rogošić M, Ukić Š (2006) J Chromatogr A 1121:228–235CrossRefGoogle Scholar
  16. 16.
    Yurkanis Bruice P (2004) Organic chemistry, 5th edn. Pearson/Prentice Hall, New JerseyGoogle Scholar
  17. 17.
    Ding C, Wang L, Tian C, Li Y, Sun Z, Wang H, Suo Y (2008) Chromatographia 68:893–902CrossRefGoogle Scholar
  18. 18.
    Barker PE, Knoechelmann A, Ganetsos G (1990) Chromatographia 29:161–166CrossRefGoogle Scholar
  19. 19.
    Coquet A, Haerdi W, Degli Agosti R, Veuthey J-L (1994) Chromatographia 38:12–16CrossRefGoogle Scholar
  20. 20.
    Stefansson M, Westerlund D (1993) Chromatographia 35:199–205CrossRefGoogle Scholar
  21. 21.
    Olano A, Calvo MM, Reglero G (1986) Chromatographia 21:538–540CrossRefGoogle Scholar
  22. 22.
    Schwald W, Concin R, Bonn G, Bobleter O (1985) Chromatographia 20:35–40CrossRefGoogle Scholar
  23. 23.
    Qiu W, Wang Z, Nie W, Guo Y, Huang L (2007) Chromatographia 66:935–939CrossRefGoogle Scholar
  24. 24.
    Dendene K, Guihard L, Balannec B, Bariou B (1995) Chromatographia 41:561–567CrossRefGoogle Scholar
  25. 25.
    Arfelli G, Sartini E (2014) Food Chem 142:152–158CrossRefGoogle Scholar
  26. 26.
    Caseiro A, Marr IL, Claeys M, Kasper-Giebl A, Puxbaum H, Pio CA (2007) J Chromatogr A 1171:37–45CrossRefGoogle Scholar
  27. 27.
    Blank I, Davidek T, Devaud S, Clety N (2002) Int Congr Ser 1245:263–267CrossRefGoogle Scholar
  28. 28.
    Corradini C, Corradini D, Huber CG, Bonn GK (1995) Chromatographia 41:511–515CrossRefGoogle Scholar
  29. 29.
    Yu H, Ding YS, Mou SF (2003) Chromatographia 57:721–728CrossRefGoogle Scholar
  30. 30.
    Jochum M, Bakry R, Wartusch I, Huck CW, Engelhardt H, Bonn GK (2002) Chromatographia 56:263–268CrossRefGoogle Scholar
  31. 31.
    Martens DA, Frankenberger WT Jr (1990) Chromatographia 29:7–12CrossRefGoogle Scholar
  32. 32.
    Gough H, Luke GA, Beeley JA, Geddes DAM (1996) Arch Oral Biol 41:141–145CrossRefGoogle Scholar
  33. 33.
    Corradini C, Cavazza A, Bignardi C (2012) Int J Carbohydr Chem 13 pp. doi: 10.1155/2012/487564
  34. 34.
    Guillén-Casla V, Rosales-Conrado N, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2011) J Food Compos Anal 24:456–464CrossRefGoogle Scholar
  35. 35.
    Efroymson MA (1960) In: Ralston A, Wilf HS (eds) Mathematical methods for digital computers. Wiley, New YorkGoogle Scholar
  36. 36.
    Gevrey M, Dimopoulos I, Lek S (2003) Ecol Model 160:249–264CrossRefGoogle Scholar
  37. 37.
    Wold H (1966) In: Krishnaiaah PR (ed) Multivariate analysis. Academic Press, New YorkGoogle Scholar
  38. 38.
    Mateos-Aparicio G (2011) Commun Stat Theory Methods 40:2305–2317CrossRefGoogle Scholar
  39. 39.
    Abdi H (2010) WIREs Comput Stat 2:97–106CrossRefGoogle Scholar
  40. 40.
    Rosipal R, Krämer N (2006) Lect Notes Comput Sci 3940:34–51CrossRefGoogle Scholar
  41. 41.
    Ramzan S, Khan MA (2010) World Appl Sci J 8:404–410Google Scholar
  42. 42.
    Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste BM, Sterna C (1996) Anal Chem 68:3851–3858CrossRefGoogle Scholar
  43. 43.
    Ye S, Wang D, Min S (2008) Chemometr Intell Lab Syst 91:194–199CrossRefGoogle Scholar
  44. 44.
    Mehmood T, Hovde Liland K, Snipen L, Sæbø S (2012) Chemometr Intell Lab Syst 118:62–69CrossRefGoogle Scholar
  45. 45.
    Moros J, Kuligowski J, Quintás G, Garrigues S, de la Guardia M (2008) Anal Chim Acta 630:150–160CrossRefGoogle Scholar
  46. 46.
    Arlot S (2010) Stat Surv 4:40–79CrossRefGoogle Scholar
  47. 47.
    Thermo Fisher Scientific (2011) Product manual CarboPac PA20. http://www.dionex.com/en-us/webdocs/4378-Man-031884-05-CarboPac-PA20-Jul11.pdf. Accessed 14 Jan 2014
  48. 48.
    Basumallick L, Rohrer J (2012) Thermo Fisher Scientific application note 282. http://www.dionex.com/en-us/webdocs/113489-AN282-IC-Biofuel-Sugars-03May2012-LPN2876-R2.pdf. Accessed 14 Jan 2014
  49. 49.
    Deming SN, Morgan SL (1993) Experimental design, a chemometric approach, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  50. 50.
    Bolton E, Wang Y, Thiessen PA, Bryant SH (2008) Annu Rep Comput Chem 4:217–241CrossRefGoogle Scholar
  51. 51.
    Yap CW (2011) J Comput Chem 32:1466–1474CrossRefGoogle Scholar
  52. 52.
    Bolanča T, Cerjan-Stefanović Š, Ukić Š, Rogošić M, Luša M (2009) J Liq Chromatogr Relat Technol 32:1373–1391CrossRefGoogle Scholar
  53. 53.
    Ukić Š, Rogošić M, Novak M, Šimović E, Tišler V, Bolanča T (2013) J Anal Methods Chem 11 pp. doi: 10.1155/2013/549729
  54. 54.
    Gupta VK, Khani H, Ahmadi-Roudi B, Mirakhorli S, Ehsan Fereyduni E, Agarwal S (2011) Talanta 83:1014–1022CrossRefGoogle Scholar
  55. 55.
    Riahi S, Ganjali MR, Pourbasheer E, Norouzi P (2008) Chromatographia 67:917–922CrossRefGoogle Scholar
  56. 56.
    Fragkaki AG, Tsantili-Kakoulidou A, Angelis YS, Koupparis M, Georgakopoulos C (2009) J Chromatogr A 1216:8404–8420CrossRefGoogle Scholar
  57. 57.
    Hadi Noorizadeh H, Noorizadeh M, Mumtaz AS (2011) J Saudi Chem Soc. doi: 10.1016/j.jscs.2011.06.007
  58. 58.
    Asadpour S, Chamsaz M, Haron MJ (2012) Res J Pharm Biol Chem Sci 3:850–860Google Scholar
  59. 59.
    Goodarzi M, Jensen R, Vander Heyden Y (2012) J Chromatogr B Biomed Appl 910:84–94CrossRefGoogle Scholar
  60. 60.
    Djaković-Sekulić T, Perišić-Janjić N, Pyka A (2003) Chromatographia 58:47–51Google Scholar
  61. 61.
    Loukas YL (2002) J Chromatogr A 904:119–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Šime Ukić
    • 1
    Email author
  • Mirjana Novak
    • 1
  • Petar Žuvela
    • 1
  • Nebojša Avdalović
    • 2
  • Yan Liu
    • 2
  • Bogusław Buszewski
    • 3
  • Tomislav Bolanča
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Thermo Fisher ScientificSunnyvaleUSA
  3. 3.Department of Environmental Chemistry and Bioanalytics, Faculty of ChemistryNicolaus Copernicus UniversityToruńPoland

Personalised recommendations