Skip to main content
Log in

Characteristics and Application of Porous Ceramic/Agarose Composite Beads Derived as an Affinity Medium

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Porous ceramic/agarose composite beads were derived as a kind of glutathione S-transferase (GST) affinity medium to investigate the characteristics and application in fast protein liquid chromatography. The analysis of back pressure and chromatographic performance in a packed bed indicated that this kind of affinity medium with a rigid structure and a high level of column efficiency would be suitable for protein chromatography under high flow velocity. The good physical stability evidenced under harsh alkaline treatments ensured the application in real chromatography processes. When the porous ceramic/agarose composite beads were used in the purification process of fusion protein GST-ADAM15, the purity of the total GST related protein reached more than 91.6 % and the yield reached 44.6 % even at the flow velocity of 764.3 cm h−1. The works indicated the characteristics of porous ceramic/agarose composite beads and their potential application in protein purification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pålsson E, Gustavsson PE, Larsson PO (2000) J Chromatogr A 878:17–25

    Article  Google Scholar 

  2. Miao ZJ, Lin DQ, Yao SJ (2005) Ind Eng Chem Res 44:8218–8224

    Article  CAS  Google Scholar 

  3. Xia HF, Lin DQ, Yao SJ (2007) J Chromatogr A 1175:55–62

    Article  CAS  Google Scholar 

  4. Tong XD, Sun Y (2002) J Chromatogr A 943:63–75

    Article  CAS  Google Scholar 

  5. Lei YL, Lin DQ, Yao SJ, Zhu ZQ (2003) J Appl Polym Sci 90:2848–2854

    Article  CAS  Google Scholar 

  6. Stella C, Rudaz S, Veuthey JL, Tchapla A (2001) Chromatographia 53:S113–S131

    Article  CAS  Google Scholar 

  7. Nawrockia J, Dunlapb C, McCormickc A, Carrd PW (2004) J Chromatogr A 1028:1–30

    Article  Google Scholar 

  8. Claessensa HA, van Stratena MA, Kirkland JJ (1996) J Chromatogr A 728:259–270

    Article  Google Scholar 

  9. Horvath J, Boschetti E, Guerrier L, Cooke N (1994) J Chromatogr A 679:11–22

    Article  CAS  Google Scholar 

  10. Boschetti E, Guerrier L, Girot P, Horvath J (1995) J Chromatogr B Biomed Sci Appl 664:225–231

    Article  CAS  Google Scholar 

  11. Fernandez MA, Carta G (1996) J Chromatogr A 746:169–183

    Article  CAS  Google Scholar 

  12. Necina R, Amatschek K, Jungbauer A (1998) Biotechnol Bioeng 60:689–698

    Article  CAS  Google Scholar 

  13. Hansen E, Mollerup J (1998) J Chromatogr A 827:259–267

    Article  CAS  Google Scholar 

  14. Garke G, Deckwer WD, Anspach FB (2000) J Chromatogr B Biomed Sci Appl 737:25–38

    Article  CAS  Google Scholar 

  15. Xia HF, Jin XH, Wu PQ, Zheng ZY (2012) J Chromatogr A 1223:126–130

    Article  CAS  Google Scholar 

  16. Tao YY, Almodovar EXP, Carta G, Ferreira G, Robbins D (2011) J Chromatogr A 1218:8027–8035

    Article  CAS  Google Scholar 

  17. Almodovar EXP, Tao YY, Carta G (2011) Biotechnol Prog 27:1264–1272

    Article  CAS  Google Scholar 

  18. Arribas J, Bech-Serra JJ, Santiago-Josefat B (2006) Can Metast Rev 25:57–68

    Article  Google Scholar 

  19. Wu J, Zhang Lf, Lei JY, Cai GM, Zhu W, Lu DR, Jin J (2009) Appl Biochem Biotechnol 157:299–310

    Article  CAS  Google Scholar 

  20. Sundberg L, Porath J (1974) J Chromatogr A 90:87–98

    Article  CAS  Google Scholar 

  21. Zhou ND, Li Y, Chen J, Ruan WQ, Lun SY (1997) Biotechnol (in Chinese) 7:30–33

    Google Scholar 

  22. Huang CJ, Chen CY (2005) Biochem Biophys Res Comm 327:8–17

    Article  CAS  Google Scholar 

  23. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  24. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  25. Bidlingmeyer BA, Warren JrFV (1984) Anal Chem 56:1583–1596

    Article  Google Scholar 

  26. Zhai YQ, Zhou WQ, Wei W, Qu JB, Lei JD, Su ZG, Ma GH (2012) Anal Chim Acta 712:152–161

    Article  CAS  Google Scholar 

  27. Jungbauer A (2005) J Chromatogr A 1065:3–12

    Article  CAS  Google Scholar 

  28. Boschetti E (1994) J Chromatogr A 658:207–236

    Article  CAS  Google Scholar 

  29. Wu J, Lei JY, Zhang Lf, Hua H, Jin J (2008) Acta Microbiol Sin 48:1067–1074

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, 2012AA021201), the National Natural Science Foundation of China (21206054), the Research Fund for the Doctoral Program of Higher Education of China (20110093120001), the Natural Science Foundation of Jiangsu Province of China (BK2011186), the 111 Project (No. 111-2-06), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, HF., Wang, SL., Jin, XH. et al. Characteristics and Application of Porous Ceramic/Agarose Composite Beads Derived as an Affinity Medium. Chromatographia 77, 25–30 (2014). https://doi.org/10.1007/s10337-013-2578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2578-4

Keywords

Navigation