Skip to main content
Log in

GC–MS Investigation of the Transfer Behavior of Alkalescent Flavors in Moderate/Low-Tar Cigarettes

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Experiments employing a technique involving solvent extraction and gas chromatography–mass spectrometry (GC–MS) analysis were conducted to investigate the distributions and transfer behavior of alkalescent flavors in moderate/low-tar cigarettes. In the current study, the transfer behavior of eleven flavors, including two alkalescent ketones, eight heterocyclic compounds, and perillartine, were evaluated by examining their retention ratios in tobacco (%r 1), their ratios of immigration into the filter tip (%r 2), their transfer ratios into the mainstream smoke (%r 3), and their ratios of interception by the filter tip (%r 4), which varied from 3.94 to 44.10, from 0 to 35.36, from 0 to 17.14, and from 7.36 to 50.53 %, respectively. The analytical results indicated that flavor transfer behavior is likely dependent on the molecular weight and boiling point of the flavor, the configuration of the cigarette, and/or other factors (e.g., intermolecular tension, chemical polarity, etc.), although no further studies of these aspects were performed as part of this work. These findings may lead to improvements in the flavoring procedure during the future development of novel cigarettes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tønnesen P, Vermeire PA (2000) Eur Respir J 16:1031–1034

    Article  Google Scholar 

  2. Jing Y, Gong C, Xian K, Wang C, Lu P (2005) Beitr Tabakforsh Int 21:280–285

    CAS  Google Scholar 

  3. Bass RT, Brown LE, Hassam SB (1989) Beitr Tabkforsh Int 14:289–295

    CAS  Google Scholar 

  4. Brozinki IM, Dolberg U, Lipp G (1972) Beitr Tabakforsh Int 6:124–130

    Google Scholar 

  5. Lin WQ, Ou YF, Wang RL, Hu L, Mao DB, Jia CX (2010) Chem Res Appl 22:1122–1125

    Google Scholar 

  6. Stotesbury S, Digard H, Willougbby L, Coucb A (1999) Beitr Tabakforsh Int 18:147–163

    CAS  Google Scholar 

  7. Li C, Xiang NJ, Shen HL, Gao Q, Zhao YY (2009) Appl Chem Ind 38:1465–1468

    CAS  Google Scholar 

  8. John D, Green J, Cbalmers P (1989) Beitr Tabkforsh Int 14:283–288

    Google Scholar 

  9. Song YB, Zong YL, Xie JP, Tang H (2005) Acta Tab Sin 11:17–22

    Google Scholar 

  10. Cai JL, Zhang XB, Zhao XD, Xie JP, Liu KJ (2008) Tob Sci Technol 10:30–33

    Google Scholar 

  11. Kim YH, Kim KH (2012) Anal Chem 84:8284–8293

    Google Scholar 

  12. Wong GKS, Ng SJ, Webster RD (2013) Anal Methods 5:219–230

    Article  CAS  Google Scholar 

  13. Barra A, Baldovini N, Loiseau A-M, Albino L, Lesecq C, Lizzani-Cuvelier L (2007) Food Chem 101:1279–1284

    Article  CAS  Google Scholar 

  14. Ceva-Antunes PMN, Bizzo HR, Alves SM, Antunes OAC (2003) J Agric Food Chem 51:1387–1392

    Article  CAS  Google Scholar 

  15. Blanch GP, Tabera J, Sanz J, Herraiz M, Reglero G (1992) J Agric Food Chem 40:1046–1049

    Article  CAS  Google Scholar 

  16. Pieraccini G, Furlanetto S, Orlandini S, Bartolucci G, Giannini I, Pinzauti S, Moneti G (2008) J Chromatogr A 1180:138–150

    Article  CAS  Google Scholar 

  17. Polzin GM, Kosa-Maines RE, Ashley DL, Watson CH (2007) Environ Sci Technol 41:1297–1302

    Article  CAS  Google Scholar 

  18. Saha S, Mistri R, Ray BC (2010) J Chromatogr A 1217:307–311

    Article  CAS  Google Scholar 

  19. Pandey SK, Kim K-H (2010) Scientific World J 10:1318–1329. doi:10.1100/tsw.2010.127

    Google Scholar 

  20. Trably E, Delgènes N, Patureau D, Delgènes JP (2004) Int J Environ Anal Chem 84:995–1008

    Article  CAS  Google Scholar 

  21. Wong K, Wang J (2001) Environ Pollut 112:407–415

    Article  CAS  Google Scholar 

  22. Sun F, Littlejohn D, Gibson MD (1998) Anal Chim Acta 364:1–11

    Article  CAS  Google Scholar 

  23. Lopez-Darias J, Pino V, Meng Y, Anderson JL, Afonso AM (2010) J Chromatogr A 1212:7189–7197

    Article  Google Scholar 

  24. Mulligan CC, Justes DR, Noll RJ, Sanders NL, Laughlin BC, Cooks RG (2006) Analyst 131:556–567

    Article  CAS  Google Scholar 

  25. Huang GM, Gao L, Duncan J, Harper JD, Sanders NL, Ouyang Z, Cooks RG (2010) J Am Soc Mass Spectrom 21:132–135

    Article  CAS  Google Scholar 

  26. Auld J, Hastie DR (2009) Int J Mass Spectrom 282:91–98

    Article  CAS  Google Scholar 

  27. Jiang CY, Sun SH, Zhang QD, Liu JH, Zhang JX, Zong YL, Xie JP (2013) Atmos Environ 67:1–7

    Article  CAS  Google Scholar 

  28. da Fonseca BM, Moreno IED, Magalhães AR, Barroso M, Queiroz JA, Ravara S, Calheiros J, Gallardo E (2012) J Chromatogr B 889–890:116–122

    Article  Google Scholar 

  29. Verdolotti L, Salerno A, Lamanna R, Nunziata A, Netti P, Lannace S (2012) Microporous Mesoporous Mater 151:79–87

    Article  CAS  Google Scholar 

  30. Ramírez N, Cuadras A, Rovira E, Borrull F, Marcé RM (2010) Talanta 82:719–727

    Article  Google Scholar 

  31. Back S-O, Kim Y-S, Perry R (1997) Atmos Environ 31:529–544

    Article  Google Scholar 

  32. Nelson PR, Conrad FW, Kelly SP, Maiolo KC, Richardson JD, Ogden MW (1997) Environ Int 23:47–52

    Article  CAS  Google Scholar 

  33. Gallego E, Roca FJ, Perales JF, Guardino X (2011) Talanta 81:916–924

    Article  Google Scholar 

  34. Pandey SK, Kim K-H (2010) TrAC Trends Anal Chem 29:804–819

    Article  CAS  Google Scholar 

  35. Mitschke S, Adam T, Streibel T, Baker RR, Zimmermann R (2005) Anal Chem 77:2288–2296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the China National Tobacco Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Tuo, S., Zhao, Y. et al. GC–MS Investigation of the Transfer Behavior of Alkalescent Flavors in Moderate/Low-Tar Cigarettes. Chromatographia 77, 171–178 (2014). https://doi.org/10.1007/s10337-013-2574-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2574-8

Keywords

Navigation