Skip to main content
Log in

Online Microreactor Titanium Dioxide RPLC-LTQ-Orbitrap MS Automated Platform for Shotgun Analysis of (Phospho) Proteins in Human Amniotic Fluid

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Biomarkers in amniotic fluid (AF) include both non-modified and phosphorylated proteins and can be used in the diagnosis of pregnancy-associated pathologic conditions. In this work, an integrated LC–MS method for selective, sensitive and reproducible analysis of phosphorylation in proteins has been applied to AF. Online digestion of (phospho) proteins was coupled with the selective enrichment on a TiO2 trap, and separated by RPLC–MSn of both normal and phosphorylated produced peptides. First, an AF-pooled sample was analyzed and a general map of contained proteins and biomarkers was derived in a single run. Then, individual AF samples were analyzed with a downscaled platform with improved sensitivity. On purpose, a trypsin-based CIM® minidisk was used for online digestion of AF. The obtained protein profile was highly consistent with the one obtained with traditional off-line digestions. Moreover, the use of a specific phospho-enrichment tool followed by LTQ-Orbitrap, enhanced the confidence in the determination of protein phosphorylation state and phosphorylation sites. The phosphorylation sites of IGFBP-1 and osteopontin present in the AF of two individual samples were monitored with a total of 24 and 17 phosphopeptides, respectively, encoding for 12 putative novel phosphorylation sites in addition to known sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hu S, Loo JA, Wong DT (2006) Proteomics 6:6326–6353

    Article  CAS  Google Scholar 

  2. Zhang X, Wei D, Yap Y, Li L, Guo S, Chen F (2007) Mass Spectrom Rev 26:403–431

    Article  CAS  Google Scholar 

  3. Chong PK, Lee H, Kong JWF, Loh MCS, Wong CH, Lim YP (2008) Proteomics 8:4370–4382

    Article  CAS  Google Scholar 

  4. Moran M, Tong J, Taylor P, Ewing RM (2006) Biochim Biophys Acta 1766:230–241

    CAS  Google Scholar 

  5. de la Fuente van Bentem S, Mentzen WI, de la Fuente A, Hirt H (2008) Proteomics 8:4453–4465

  6. Tedford NC, Hall AB, Graham JR, Murphy CE, Gordon NF, Radding JA (2009) Proteomics 9:1469–1487

    Article  CAS  Google Scholar 

  7. Cho CK, Shan SJ, Winsor EJ, Diamandis EP (2007) Mol Cell Proteomics 6:1406–1415

    Article  CAS  Google Scholar 

  8. Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG, Smith RD (2005) J Proteome Res 4:1073–1085

    Article  CAS  Google Scholar 

  9. Michaels JEA, Dasari S, Pereira L, Reddy AP, Lapidus JA, Lu X, Jacob T, Thomas A, Rodland M, Roberts CT, Gravett MG, Nagalla SR (2007) J Proteome Res 6:1277–1285

    Article  CAS  Google Scholar 

  10. Nilsson S, Ramström M, Palmblad M, Axelsson O, Bergquist J (2004) J Proteome Res 3:884–889

    Article  CAS  Google Scholar 

  11. Miell JP, Jauniaux E, Langford KS, Westwood M, White A, Jones JS (1997) Mol Hum Reprod 3:343–349

    Article  CAS  Google Scholar 

  12. Seferovic MD, Ali R, Kamei H, Liu S, Khosravi JM, Nazarian S, Han VKM, Duan C, Gupta M (2009) Endocrinology 150:220–231

    Article  CAS  Google Scholar 

  13. Carter AM, Kingston MJ, Han KK, Mazzuca DM, Nygard K, Han VKM (2005) J Endocrinol 184:179–189

    Article  CAS  Google Scholar 

  14. Butler TG, Schwartz J, McMillen IC (2002) J Clin Invest 110:411–417

    Google Scholar 

  15. Vuadens F, Benay C, Crettaz D, Gallot D, Sapin V, Schneider P, Bienvenut WV, Lémery D, Quadroni M, Dastugue B, Tissot JD (2003) Proteomics 3:1521–1525

    Article  CAS  Google Scholar 

  16. Kazanecki CC, Uzwiak DJ, Denhardt DT (2007) J Cell Biochem 102:912–924

    Article  CAS  Google Scholar 

  17. Gianazza E, Wait R, Begum S, Eberini I, Campagnoli M, Labò S, Galliano M (2007) Proteome Clin Appl 1:167–175

    Article  CAS  Google Scholar 

  18. Michel PE, Crettaz D, Morier P, Heller M, Gallot D, Tissot JD, Reymond F, Rossier JS (2006) Electrophoresis 27:1169–1181

    Article  CAS  Google Scholar 

  19. Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G (2005) Biochemistry 44:6990–7003

    Article  CAS  Google Scholar 

  20. Johnson GA, Burghardt RC, Bazer FW, Spencer TE (2003) Biol Reprod 69:1458–1471

    Article  CAS  Google Scholar 

  21. Yates JR 3rd, Ruse CI, Nakorchevsky A (2009) Annu Rev Biomed Eng 11:49–79

    Article  CAS  Google Scholar 

  22. Aebersold R, Mann M (2003) Nature 422:198–207

    Article  CAS  Google Scholar 

  23. Temporini C, Calleri E, Massolini G, Caccialanza G (2008) Mass Spectrom Rev 27:207–236

    Article  CAS  Google Scholar 

  24. Salih E (2005) Mass Spectrom Rev 24:828–846

    Article  CAS  Google Scholar 

  25. Nita-Lazar A, Saito-Benz H, White FM (2008) Proteomics 8:4433–4443

    Article  CAS  Google Scholar 

  26. Collins MO, Yu L, Choudhary JS (2007) Proteomics 7:2751–2768

    Article  CAS  Google Scholar 

  27. Paradela A, Albar JP (2008) J Proteome Res 7:1809–1818

    Article  CAS  Google Scholar 

  28. Macek B, Mann M, Olsen JV (2009) Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  Google Scholar 

  29. Dunn JD, Reid GE, Bruening ML (2010) Mass Spectrom Rev 29:29–54

    CAS  Google Scholar 

  30. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Nat Methods 4:231–237

    Article  CAS  Google Scholar 

  31. Reinders J, Sickmann A (2005) Proteomics 5:4052–4061

    Article  CAS  Google Scholar 

  32. Thingholm TE, Jensen ON, Larsen MR (2009) Proteomics 9:1451–1468

    Article  CAS  Google Scholar 

  33. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Anal Chem 76:3935–3943

    Article  CAS  Google Scholar 

  34. Temporini C, Dolcini L, Abee A, Calleri E, Galliano M, Caccialanza G, Massolini G (2008) J Chromatogr A 1183:65–75

    Article  CAS  Google Scholar 

  35. Cantin GT, Shock TR, Park SK, Madhani HD, Yates JR 3rd (2007) Anal Chem 79:4666–4673

    Article  CAS  Google Scholar 

  36. Lee HJ, Na K, Kwon MS, Kim H, Kim KS, Paik YK (2009) Proteomics 9:3395–3408

    Article  CAS  Google Scholar 

  37. Hou J, Cui Z, Xie Z, Xue P, Wu P, Chen X, Li J, Cai T, Yang FJ (2010) J Proteome Res 9:777–788

    Article  CAS  Google Scholar 

  38. Dai J, Wang LS, Wu YB, Sheng QH, Wu JR, Shieh CH, Zeng R (2009) J Proteome Res 8:133–141

    Article  CAS  Google Scholar 

  39. Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJR (2008) J Proteome Res 7:687–697

    Article  CAS  Google Scholar 

  40. Thingholm TE, Larsen MR (2009) Methods Mol Biol 527:57–66

    Article  CAS  Google Scholar 

  41. Yates JR 3rd, Ruse CI, Nakorchevsky A (2009) Annu Rev Biomed Eng 11:49–79

    Article  CAS  Google Scholar 

  42. Han X, Aslanian A, Yates JR 3rd (2008) Curr Opin Chem Biol 12:483–490

    Article  CAS  Google Scholar 

  43. Gnad F, de Godoy LMF, Cox J, Neuhauser N, Ren S, Olsen JV, Mann M (2009) Proteomics 9:4642–4652

    Article  CAS  Google Scholar 

  44. Boja ES, Phillips D, French SA, Harris RA, Balaban RS (2009) J Proteome Res 8:4665–4675

    Article  CAS  Google Scholar 

  45. Zanivan S, Gnad F, Wickström SA, Geiger T, Macek B, Cox J, Fassler R, Mann M (2008) J Proteome Res 7:5314–5326

    Article  CAS  Google Scholar 

  46. Wu J, Warren P, Shakey Q, Sousa E, Hill A, Ryan TE, He T (2010) Proteomics 10:2224–2234

    Article  CAS  Google Scholar 

  47. Nicoli R, Rudaz S, Stella C, Veuthey JL (2009) J Chromatogr A 1216:2695–2699

    Article  CAS  Google Scholar 

  48. Bodenmiller B, Campbell D, Gerrits B, Lam H, Jovanovic M, Picotti P, Schlapbach R, Aebersold R (2008) Nat Biotechnol 26:1339–1340

    Article  CAS  Google Scholar 

  49. Barbarini N, Magni P, Bellazzi R (2007) BMC Bioinforma 8:6

    Article  Google Scholar 

  50. Elias JE, Gygi SP (2007) Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  51. Boersema PJ, Mohammeda S, Heck AJR (2009) J Mass Spectrom 44:861–878

    Article  CAS  Google Scholar 

  52. Eidhammer I, Flikka K, Martens L, Mikalsen SO (2007) Computational methods for mass spectrometry proteomics. Wiley, New York

    Book  Google Scholar 

  53. Nilsson S, Ramström M, Palmblad M, Axelsson O, Bergquist J (2004) J Proteome Res 3:884–889

    Article  CAS  Google Scholar 

  54. Park SJ, Yoon WG, Song JS, Jung HS, Kim CJ, Oh SY, Yoon BH, Jung G, Kim HJ, Nirasawa T (2006) Proteomics 6:349–363

    Article  CAS  Google Scholar 

  55. Tsangaris GT, Kolialexi A, Karamessinis PM, Anagnostopoulos AK, Antsaklis A, Fountoulakis M, Mavrou A (2006) In vivo 20:479–490

    CAS  Google Scholar 

  56. Nesvizhskii AI (2007) Methods Mol Biol 367:87–119

    CAS  Google Scholar 

  57. Sadygov RG, Cociorva D, Yates JR 3rd (2004) Nat Methods 1:195–202

    Article  CAS  Google Scholar 

  58. Wang B, Malik R, Nigg EA, Körner R (2008) Anal Chem 80:9526–9533

    Article  CAS  Google Scholar 

  59. Kolialexi A, Tsangaris GT, Mavrou A (2009) Expert Rev Proteome 6:111–113

    Article  CAS  Google Scholar 

  60. Mavrou A, Anagnostopoulos AK, Kolialexi A, Vougas K, Papantoniou N, Antsaklis A, Fountoulakis M, Tsangaris GT (2008) J Proteome Res 7:1862–1866

    Article  CAS  Google Scholar 

  61. Gravett MG, Novy MJ, Rosenfeld RG, Reddy AP, Jacob T, Turner M, McCormack A, Lapidus JA, Hitti J, Eschenbach DA, Roberts CTJ, Nagalla SR (2004) JAMA 292:462–469

    Article  CAS  Google Scholar 

  62. Tsangaris GT, Karamessinis P, Kolialexi A, Garbis SD, Antsaklis A, Mavrou A, Fountoulakis M (2006) Proteomics 6:4410–4419

    Article  CAS  Google Scholar 

  63. Hassan MI, Kumar V, Singh TP, Yadav S (2008) Prenat Diagn 28:102–108

    Article  CAS  Google Scholar 

  64. Buhimschi IA, Zhao G, Rosenberg VA, Abdel-Razeq S, Thung S, Buhimschi CS (2008) PLoS One 3:e2049

    Article  Google Scholar 

  65. Buhimschi CS, Bhandari V, Hamar BD, Bahtiyar MO, Zhao G, Sfakianaki AK, Pettker CM, Magloire L, Funai E, Norwitz ER, Paidas M, Copel JA, Weiner CP, Lockwood CJ, Buhimschi IA (2007) PLoS Med 4:e18

    Article  Google Scholar 

  66. Vascotto C, Salzano AM, D’Ambrosio C, Fruscalzo A, Marchesoni D, di Loreo C, Scaloni A, Tell G, Quadrifoglio F (2007) J Proteome Res 6:160–170

    Article  CAS  Google Scholar 

  67. Mange A, Desmetz C, Bellet V, Molinari N, Maudelonde T, Solassol J (2008) Proteome Sci 6:1

    Article  Google Scholar 

  68. Buhimschi IA, Christner R, Buhimschi CS (2005) BJOG 112:173–181

    Article  CAS  Google Scholar 

  69. Rüetschi U, Rosén Ǻ, Karlsson G, Zetterberg H, Rymo L, Hagberg H, Jacobsson B (2005) J Prot Res 4:2236–2242

    Article  Google Scholar 

  70. Bahl JMC, Jensen SS, Larsen MR, Heegaard NHH (2008) Anal Chem 80:6308–6316

    Article  Google Scholar 

  71. Queloz PA, Crettaz D, Thadikkaran L, Sapin V, Gallot D, Jani J, Deprest J, Lémery D, Barelli S, Tissot JD (2007) J Chromatogr B 850:336–342

    Article  CAS  Google Scholar 

  72. Dolcini L, Sala A, Campagnoli M, Labò S, Valli M, Visai L, Minchiotti L, Monaco HL, Galliano M (2009) FEBS J 276:6033–6046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Federica Corana, from Centro Grandi Strumenti, University of Pavia, for advice on LTQ instrument. This work was supported by PRIN grant 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Temporini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 584 kb)

Supplementary material 2 (XLS 78 kb)

Supplementary material 3 (XLS 203 kb)

Supplementary material 4 (XLS 41 kb)

Supplementary Information Available

Supplementary Materials and Methods and Figures (1–3) are available in Online Resource 1. Supplementary Table 1 and Table 2 are available in Online Resource 1; Supplementary Table 3 and Table 4 are available in Online Resource 2; Database A and Database B are available free of charge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temporini, C., Nicoli, R., Tiengo, A. et al. Online Microreactor Titanium Dioxide RPLC-LTQ-Orbitrap MS Automated Platform for Shotgun Analysis of (Phospho) Proteins in Human Amniotic Fluid. Chromatographia 77, 39–50 (2014). https://doi.org/10.1007/s10337-013-2567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2567-7

Keywords

Navigation