Skip to main content
Log in

Review of SBSE Technique for the Analysis of Pesticide Residues in Fruits and Vegetables

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Stir bar sorptive extraction (SBSE) is a microextraction technique, introduced to overcome the problem of limited extraction capacity and fragile fiber coatings inherent in the solid phase microextraction technique. The major limitations of the SBSE technique are that only polydimethylsiloxane has been commercially available, this reduces its use to non-polar analytes, and its tedious reconstitution step which can lead to loss of analytes and introduction of impurities. The current trend has been aimed at the use of other materials, some of which are commercially available, such as restricted access materials, carbon adsorbents, molecularly imprinted polymers, ionic liquids, microporous monoliths, sol–gel prepared coatings and dual phase material. This has greatly helped in widening the applications of SBSE for pesticide analysis in fruits and vegetables and other matrices. The introduction of a thermal desorption unit which eliminates the reconstitution step of the stir bar in organic solvents before instrumental analysis has helped to automate the extraction method online with gas chromatography. This paper reviews the use of SBSE in pesticide residues analysis in fruits and vegetables, with a view on sample preparation steps, method optimization and validation of analytical figures of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148

    Article  CAS  Google Scholar 

  2. Bojko B, Cudjoe E, Gómez-Ríos GA, Gorynski K, Jiang R, Reyes-Garcés N, Risticevic S, Silva ÉAS, Togunde O, Vuckovic D, Pawliszyn J (2012) SPME: quo vadis? Anal Chim Acta 750:132–151

    Article  CAS  Google Scholar 

  3. Pawliszyn J (1997) Solid phase microextraction: theory and practice. VCH, New York

    Google Scholar 

  4. Pawliszyn J (2012) Theory of solid-phase microextraction. In: Pawliszyn J (ed) Handbook of solid phase microextraction. Elsevier, USA

    Google Scholar 

  5. Beceiro-González E, González-Castro MJ, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2012) Analytical methodology for the determination of organochlorine pesticides in vegetation. J Assos Off Anal Chem Int 95(5):1291–1310

    Google Scholar 

  6. Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation: a review. Anal Bioanal Chem 373(1–2):3–22

    CAS  Google Scholar 

  7. Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153(1–2):36–53

    Article  CAS  Google Scholar 

  8. Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396(1):339–364

    Article  CAS  Google Scholar 

  9. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn 10:737–747

    Article  Google Scholar 

  10. Tankiewicz M, Fenik J, Biziuk M (2011) Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86(1):8–22

    Article  CAS  Google Scholar 

  11. Kawaguchi M, Ito R, Saito K, Nakazawa H (2006) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J Pharm Biomed Anal 40(3):500–508

    Article  CAS  Google Scholar 

  12. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández LA, Etxebarria N, Zuloaga O (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217(16):2642–2666

    Article  CAS  Google Scholar 

  13. Hyötyläinen T, Riekkola ML (2008) Sorbent- and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: a review. Anal Chim Acta 614(1):27–37

    Article  Google Scholar 

  14. Sánchez-Rojas F, Bosch-Ojeda C, Cano-Pavón JM (2009) A review of stir bar sorptive extraction. Chromatogr 69(SUPPL. 1):S79–S94

    Article  Google Scholar 

  15. Nogueira JMF (2012) Novel sorption-based methodologies for static microextraction analysis: a review on SBSE and related techniques. Anal Chim Acta 757:1–10

    Article  CAS  Google Scholar 

  16. Blasco C, Font G, Picó Y (2002) Comparison of microextraction procedures to determine pesticides in oranges by liquid chromatography-mass spectrometry. J Chromatogr A 970(1–2):201–212

    Article  CAS  Google Scholar 

  17. Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184(1–2):191–219

    Article  CAS  Google Scholar 

  18. Wan Ibrahim WA, Wan Ismail WN, Abdul Keyon AS, Sanagi MM (2011) Preparation and characterization of a new sol-gel hybrid based tetraethoxysilane-polydimethylsiloxane as a stir bar extraction sorbent materials. J Sol-Gel Sci Technol 58(3):602–611

    Article  CAS  Google Scholar 

  19. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, David F, Sandra P (2005) Dual-phase twisters: A new approach to headspace sorptive extraction and stir bar sorptive extraction. J Chromatogr A 1094(1–2):9–16

    Article  CAS  Google Scholar 

  20. Bicchi C, Cordero C, Liberto E, Sgorbini B, David F, Sandra P, Rubiolo P (2007) Influence of polydimethylsiloxane outer coating and packing material on analyte recovery in dual-phase headspace sorptive extraction. J Chromatogr A 1164(1–2):33–39

    Article  CAS  Google Scholar 

  21. Zhu X, Cai J, Yang J, Su Q, Gao Y (2006) Films coated with molecular imprinted polymers for the selective stir bar sorption extraction of monocrotophos. J Chromatogr A 1131(1–2):37–44

    Article  CAS  Google Scholar 

  22. Liu W, Hu Y, Zhao J, Xu Y, Guan Y (2005) Determination of organophosphorus pesticides in cucumber and potato by stir bar sorptive extraction. J Chromatogr A 1095(1–2):1–7

    Article  CAS  Google Scholar 

  23. Liu W, Wang H, Guan Y (2004) Preparation of stir bars for sorptive extraction using sol-gel technology. J Chromatogr A 1045(1–2):15–22

    Article  CAS  Google Scholar 

  24. Lambert JP, Mullett WM, Kwong E, Lubda D (2005) Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids. J Chromatogr A 1075(1–2):43–49

    Article  CAS  Google Scholar 

  25. Fontanals N, Marcé RM, Borrull F (2007) New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 1152(1–2):14–31

    Article  CAS  Google Scholar 

  26. Hu Y, Li J, Hu Y, Li G (2010) Development of selective and chemically stable coating for stir bar sorptive extraction by molecularly imprinted technique. Talanta 82(2):464–470

    Article  CAS  Google Scholar 

  27. Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668(2):87–99

    Article  CAS  Google Scholar 

  28. Hu C, He M, Chen B, Hu B (2013) A sol-gel polydimethylsiloxane/polythiophene coated stir bar sorptive extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. J Chromatogr A 1275:25–31

    Article  CAS  Google Scholar 

  29. Martín-Esteban A (2013) Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC: Trends Anal Chem

  30. Montes R, Rodríguez I, Ramil M, Rubí E, Cela R (2009) Solid-phase extraction followed by dispersive liquid–liquid microextraction for the sensitive determination of selected fungicides in wine. J Chromatogr A 1216(29):5459–5466

    Article  CAS  Google Scholar 

  31. Turner C (2006) Overview of modern extraction techniques for food and agricultural samples. In: Turner C (ed) modern extraction techniques, vol 926. ACS, Washington DC

    Chapter  Google Scholar 

  32. Urbanowicz M, Zabiegała B, Namieśnik J (2011) Solventless sample preparation techniques based on solid- and vapour-phase extraction. Anal Bioanal Chem 399(1):277–300

    Article  CAS  Google Scholar 

  33. David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152(1–2):54–69

    Article  CAS  Google Scholar 

  34. Barriada-Pereira M, Serôdio P, González-Castro MJ, Nogueira JMF (2010) Determination of organochlorine pesticides in vegetable matrices by stir bar sorptive extraction with liquid desorption and large volume injection-gas chromatography-mass spectrometry towards compliance with European Union directives. J Chromatogr A 1217(1):119–126

    Article  CAS  Google Scholar 

  35. Ochiai N, Sasamoto K, Kanda H, Nakamura S (2006) Fast screening of pesticide multiresidues in aqueous samples by dual stir bar sorptive extraction-thermal desorption-low thermal mass gas chromatography-mass spectrometry. J Chromatogr A 1130(1):83–90

    Article  CAS  Google Scholar 

  36. Bicchi C, Cordero C, Rubiolo P, Sandra P (2003) Impact of water/PDMS phase ratio, volume of PDMS, and sampling time on stir bar sorptive extraction (SBSE) recovery of some pesticides with different K o/w. J Sep Sci 26(18):1650–1656

    Article  CAS  Google Scholar 

  37. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Automation and optimization of solid-phase microextraction. Anal Chem 64(17):1960–1966

    Article  CAS  Google Scholar 

  38. Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J (2010) Protocol for solid-phase microextraction method development. Nat Protoc 5(1):122–139

    Article  CAS  Google Scholar 

  39. Kudlejova L, Risticevic S, Vuckovic D (2012) Solid-phase microextraction method development. In: Pawliszyn J (ed) Handbook of solid phase microextration. Elsevier, Waltham

    Google Scholar 

  40. León VM, Álvarez B, Cobollo MA, Muñoz S, Valor I (2003) Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: I method optimisation. J Chromatogr A 999(1–2):91–101

    Article  Google Scholar 

  41. Prieto A, Zuloaga O, Usobiaga A, Etxebarria N, Fernández LA (2008) Use of experimental design in the optimisation of stir bar sorptive extraction followed by thermal desorption for the determination of brominated flame retardants in water samples. Anal Bioanal Chem 390(2):739–748

    Article  CAS  Google Scholar 

  42. Guan W, Wang Y, Xu F, Guan Y (2008) Poly(phthalazine ether sulfone ketone) as novel stationary phase for stir bar sorptive extraction of organochlorine compounds and organophosphorus pesticides. J Chromatogr A 1177(1):28–35

    Article  CAS  Google Scholar 

  43. Popp P, Keil P, Montero L, Rückert M (2005) Optimized method for the determination of 25 polychlorinated biphenyls in water samples using stir bar sorptive extraction followed by thermodesorption-gas chromatography/mass spectrometry. J Chromatogr A 1071(1–2):155–162

    Article  CAS  Google Scholar 

  44. Portugal FCM, Pinto ML, Nogueira JMF (2008) Optimization of polyurethane foams for enhanced stir bar sorptive extraction of triazinic herbicides in water matrices. Talanta 77(2):765–773

    Article  CAS  Google Scholar 

  45. Portugal FCM, Pinto ML, Pires J, Nogueira JMF (2010) Potentialities of polyurethane foams for trace level analysis of triazinic metabolites in water matrices by stir bar sorptive extraction. J Chromatogr A 1217(23):3707–3710

    Article  CAS  Google Scholar 

  46. Giordano A, Fernández-Franzón M, Ruiz MJ, Font G, Picó Y (2009) Pesticide residue determination in surface waters by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 393(6–7):1733–1743

    Article  CAS  Google Scholar 

  47. Quintana JB, Rodil R, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2007) Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry. J Chromatogr A 1174(1–2):27–39

    Article  CAS  Google Scholar 

  48. Ochiai N, Sasamoto K, Kanda H, Yamagami T, David F, Tienpont B, Sandra P (2005) Optimization of a multi-residue screening method for the determination of 85 pesticides in selected food matrices by stir bar sorptive extraction and thermal desorption GC–MS. J Sep Sci 28(9–10):1083–1092

    Article  CAS  Google Scholar 

  49. Serôdio P, Nogueira JMF (2005) Development of a stir-bar-sorptive extraction-liquid desorption-large-volume injection capillary gas chromatographic-mass spectrometric method for pyrethroid pesticides in water samples. Anal Bioanal Chem 382(4):1141–1151

    Article  Google Scholar 

  50. Sandra P, Tienpont B, David F (2003) Multi-residue screening of pesticides in vegetables, fruits and baby food by stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry. J Chromatogr A 1000(1–2):299–309

    Article  CAS  Google Scholar 

  51. Juan-García A, Mañes J, Font G, Picó Y (2004) Evaluation of solid-phase extraction and stir-bar sorptive extraction for the determination of fungicide residues at low-μg kg−1 levels in grapes by liquid chromatography-mass spectrometry. J Chromatogr A 1050(2):119–127

    Article  Google Scholar 

  52. Juan-García A, Picó Y, Font G (2005) Capillary electrophoresis for analyzing pesticides in fruits and vegetables using solid-phase extraction and stir-bar sorptive extraction. J Chromatogr A 1073(1–2):229–236

    Article  Google Scholar 

  53. Wennrich L, Popp P, Breuste J (2001) Determination of organochlorine pesticides and chlorobenzenes in fruit and vegetables using subcritical water extraction combined with sorptive enrichment and CGC-MS. Chromatogr 53:S380–S386 SPEC. ISS

    Article  CAS  Google Scholar 

  54. Kende A, Csizmazia Z, Rikker T, Angyal V, Torkos K (2006) Combination of stir bar sorptive extraction-retention time locked gas chromatography-mass spectrometry and automated mass spectral deconvolution for pesticide identification in fruits and vegetables. Microchem J 84(1–2):63–69

    Article  CAS  Google Scholar 

  55. Viñas P, Aguinaga N, Campillo N, Hernández-Córdoba M (2008) Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J Chromatogr A 1194(2):178–183

    Article  Google Scholar 

  56. Campillo N, Viñas P, Aguinaga N, Férez G, Hernández-Córdoba M (2010) Stir bar sorptive extraction coupled to liquid chromatography for the analysis of strobilurin fungicides in fruit samples. J Chromatogr A 1217(27):4529–4534

    Article  CAS  Google Scholar 

  57. Lavagnini I, Urbani A, Magno F (2011) Overall calibration procedure via a statistically based matrix-comprehensive approach in the stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry analysis of pesticide residues in fruit-based soft drinks. Talanta 83(5):1754–1762

    Article  CAS  Google Scholar 

  58. Hogendoorn E, Van Zoonen P (2000) Recent and future developments of liquid chromatography in pesticide trace analysis. J Chromatogr A 892(1–2):435–453

    Article  CAS  Google Scholar 

  59. Hogendoorn EA, Dijkman E, Baumann B, Hidalgo C, Sancho JV, Hernandez F (1999) Strategies in using analytical restricted access media columns for the removal of humic acid interferences in the trace analysis of acidic herbicides in water samples by coupled column liquid chromatography with uv detection. Anal Chem 71(6):1111–1118

    Article  CAS  Google Scholar 

  60. Simplício AL, Vilas Boas L (1999) Validation of a solid-phase microextraction method for the determination of organophosphorus pesticides in fruits and fruit juice. J Chromatogr A 833(1):35–42

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Malaya Research Management Centre for supporting this research work with IPPP Grant (PV009/2011A) and UMRG Grant (RG227/12AFR). We are also grateful to Elsevier® for permission for the use of figure in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan H. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulra’uf, L.B., Tan, G.H. Review of SBSE Technique for the Analysis of Pesticide Residues in Fruits and Vegetables. Chromatographia 77, 15–24 (2014). https://doi.org/10.1007/s10337-013-2566-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2566-8

Keywords

Navigation