Skip to main content
Log in

Digestion of Enolase and Carbonic Anhydrase as Model Proteins for Therapeutic Proteins in Blood Plasma with Immobilized Thermolysin and Quantification of Some of the Peptides by LC/LC–MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

There is a need for fast method development in the early drug discovery phase of therapeutic proteins. Thermolysin has not been used for quantification of proteins in blood plasma earlier. It is a thermostable protease which permits the use of high temperatures for fast hydrolysis of proteins. Model proteins were digested with immobilized thermolysin on agarose gel. Protein-specific peptides were selected for quantitation and quantified based on stable isotope dilution. Protein digests of blood plasma were cleaned and separated using an automated LC/LC–MS/MS system. Essential digestion parameters that influence thermolysin hydrolytic activity were optimized for high peptide yield. The validated methods were selective, linear, precise and accurate with a limit of detection of 2 nM for both proteins. The proposed strategy for method development could be valuable for quantification of proteins in blood plasma samples. The study underscores and discusses important features of the enzymatic digestion and chromatographic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ewles M, Goodwin L (2011) Bioanalytical approaches to analyzing peptides and proteins by LC–MS/MS. Bioanalysis 3:1379–1397

    Article  CAS  Google Scholar 

  2. Ezan E, Bitsch F (2009) Critical comparison of MS and immunoassays for the bioanalysis of therapeutic antibodies. Bioanalysis 1:1375–1388

    Article  CAS  Google Scholar 

  3. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  4. Gant-Branum RL, Kerr TJ, McLean JA (2009) Labeling strategies in mass spectrometry-based protein quantitation. Analyst (Cambridge, UK) 134:1525–1530

    Article  CAS  Google Scholar 

  5. Yang Z, Hayes M, Fang X, Daley MP, Ettenberg S, Tse FLS (2007) LC–MS/MS approach for quantification of therapeutic proteins in plasma using a protein internal standard and 2D-solid-phase extraction cleanup. Anal Chem (Washington, DC, US) 79:9294–9301

    Article  CAS  Google Scholar 

  6. Lesur A, Varesio E, Hopfgartner G (2010) Accelerated tryptic digestion for the analysis of biopharmaceutical monoclonal antibodies in plasma by liquid chromatography with tandem mass spectrometric detection. J Chromatogr A 1217:57–64

    Article  CAS  Google Scholar 

  7. Dizdaroglu M, Reddy PT, Jaruga P (2011) Identification and quantification of DNA repair proteins by liquid Chromatography/Isotope-dilution tandem mass spectrometry using their fully 15N-labeled analogues as internal standards. J Proteome Res 10:3802–3813

    Article  CAS  Google Scholar 

  8. Obata T, Aomine M (2010) The properties of B-form monoamine oxidase in mitochondria from monkey platelet. Res Commun Mol Pathol Pharmacol 122–123:13–26

    Google Scholar 

  9. N’Negue M, Miclo L, Girardet J, Campagna S, Molle D, Gaillard J (2006) Proteolysis of bovine α-lactalbumin by thermolysin during thermal denaturation. Int Dairy J 16:1157–1167

    Article  Google Scholar 

  10. Bark SJ, Muster N, Yates JR III, Siuzdak G (2001) High-temperature protein mass mapping using a thermophilic protease. J Am Chem Soc 123:1774–1775

    Article  CAS  Google Scholar 

  11. Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25:1847–1851

    Article  CAS  Google Scholar 

  12. Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768

    Article  CAS  Google Scholar 

  13. Sandberg LB, Roos PJ, Pollman MJ, Hodgkin DD, Blankenship JW (1990) Quantitation of elastin in tissues and culture: problems related to the accurate measurement of small amounts of elastin with special emphasis on the rat. Connect Tissue Res 25:139–148

    Article  CAS  Google Scholar 

  14. Petro M, Svec F, Frechet JMJ (1996) Immobilization of trypsin onto “molded” macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) rods and use of the conjugates as bioreactors and for affinity chromatography. Biotechnol Bioeng 49:355–363

    Article  CAS  Google Scholar 

  15. Hahn HW, Rainer M, Ringer T, Huck CW, Bonn GK (2009) Ultrafast microwave-assisted in-tip digestion of proteins. J Proteome Res 8:4225–4230

    Article  CAS  Google Scholar 

  16. Guisan JM, Polo E, Aguado J, Romero MD, Alvaro G, Guerra MJ (1997) Immobilization-stabilization of thermolysin onto activated agarose gels. Biocatal Biotransform 15:159–173

    Article  CAS  Google Scholar 

  17. Jayamanne M, Granelli I, Tjernberg A, Edlund P (2010) Development of a two-dimensional liquid chromatography system for isolation of drug metabolites. J Pharm Biomed Anal 51:649–657

    Article  CAS  Google Scholar 

  18. Johansen K, Edlund PO (1990) Determination of water-soluble vitamins in blood and plasma by coupled-column liquid chromatography. J Chromatogr 506:471–479

    Article  CAS  Google Scholar 

  19. Chichila TMP, Edlund PO, Henion JD, Wilson R, Epstein RL (1989) Determination of melengestrol acetate in bovine tissues by automated coupled-column normal-phase high-performance liquid chromatography. J Chromatogr Biomed Appl 488:389–406

    Article  CAS  Google Scholar 

  20. Domen PL, Nevens JR, Mallia AK, Hermanson GT, Klenk DC (1990) Site-directed immobilization of proteins. J Chromatogr 510:293–302

    Article  CAS  Google Scholar 

  21. Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumor tissues. Biochem J 282:273–278

    CAS  Google Scholar 

  22. Norrgran J, Williams TL, Woolfitt AR, Solano MI, Pirkle JL, Barr JR (2009) Optimization of digestion parameters for protein quantification. Anal Biochem 393:48–55

    Article  CAS  Google Scholar 

  23. Deng B, Zhu P, Wang Y, Feng J, Li X, Xu X, Lu H, Xu Q (2008) Determination of free calcium and calcium-containing species in human plasma by capillary electrophoresis-inductively coupled plasma optical emission spectrometry. Anal Chem 80:5721–5726

    Article  CAS  Google Scholar 

  24. Bloxam DL, Tan JCY, Parkinson CE (1984) Non-protein bound zinc concentration in human plasma and amniotic fluid measured by ultrafiltration. Clin Chim Acta 144:81–93

    Article  CAS  Google Scholar 

  25. Voordouw G, Milo C, Roche RS (1976) Role of bound calcium ions in thermostable, proteolytic enzymes. separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry 15:3716–3724

    Article  CAS  Google Scholar 

  26. Vita C, Dalzoppo D, Fontana A (1985) Limited proteolysis of thermolysin by subtilisin: isolation and characterization of a partially active enzyme derivative. Biochemistry 24:1798–1806

    Article  CAS  Google Scholar 

  27. Dietl T, Tschesche H (1976) The disulfide bridges of the trypsin-kallikrein inhibitor K from roman snails (helix pomatia). thermal denaturation and proteolysis by thermolysin. Hoppe-Seyler’s Z Physiol Chem 357:139–145

    Article  CAS  Google Scholar 

  28. Burstein Y, Walsh KA, Neurath H (1974) Evidence of an essential histidine residue in thermolysin. Biochemistry 13:205–210

    Article  CAS  Google Scholar 

  29. Kuhlmann FE, Apffel A, Fischer SM, Goldberg G, Goodley PC (1995) Signal enhancement for gradient reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol. J Am Soc Mass Spectrom 6:1221–1225

    Article  CAS  Google Scholar 

  30. Annesley T M (2003) Ion suppression in mass spectrometry. Clin Chem (Washington, DC, U. S.) 49:1041-1044

  31. Mallet CR, Lu Z, Mazzeo JR (2004) A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Commun Mass Spectrom 18:49–58

    Article  CAS  Google Scholar 

  32. Antignac J, de Wasch K, Monteau F, De Brabander H, Andre F, Le Bizec B (2005) The ion suppression phenomenon in liquid chromatography-mass spectrometry and its consequences in the field of residue analysis. Anal Chim Acta 529:129–136

    Article  CAS  Google Scholar 

  33. Ghassem M, Arihara K, Babji AS, Said M, Ibrahim S (2011) Purification and identification of ACE inhibitory peptides from haruan (channa striatus) myofibrillar protein hydrolysate using HPLC-ESI-TOF MS/MS. Food Chem 129:1770–1777

    Article  CAS  Google Scholar 

  34. Moeschel K, Nouaimi M, Steinbrenner C, Bisswanger H (2003) Immobilization of thermolysin to polyamide nonwoven materials. Biotechnol Bioeng 82:190–199

    Article  CAS  Google Scholar 

  35. Lentner C (1985) Geigy scientific tables, Physical chemistry composition of blood, hematology somatometric data, vol 3, pp 200–213

  36. Kline JA, Zagorski J (2011) Method of using carbonic anhydrase to detect hemolysis. PCT Int Appl 2010-US3022; 2009-281998P 28pp Chemical Indexing Equivalent to 154:583157(US)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljona Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, A., Bruno, O., Granelli, I. et al. Digestion of Enolase and Carbonic Anhydrase as Model Proteins for Therapeutic Proteins in Blood Plasma with Immobilized Thermolysin and Quantification of Some of the Peptides by LC/LC–MS/MS. Chromatographia 77, 59–74 (2014). https://doi.org/10.1007/s10337-013-2562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2562-z

Keywords

Navigation