Skip to main content
Log in

Separation of 5-Lipoxygenase Metabolites Using Cyclodextrin-Modified Microemulsion Electrokinetic Chromatography and Head Column Field-Amplified Sample Stacking

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A cyclodextrin-modified microemulsion electrokinetic chromatography method employing head column field-amplified sample stacking was developed for the analysis of arachidonic acid metabolites of the lipoxygenase pathways. The influence of the concentration of boric acid, the surfactant sodium dodecyl sulfate, the co-surfactant 1-butanol and the oil phase octane as well as the pH of the background electrolyte, the separation voltage and the separation temperature was studied. The optimized microemulsion consisting of 20 mM boric acid buffer, pH 9.0, 3.0 % (m/v) sodium dodecyl sulfate, 0.5 % (v/v) octane, 5.0 % (v/v) 1-butanol and 15 mM α-cyclodextrin enabled the separation of 20-hydroxy-leukotriene B4, leukotriene B4, 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 12(S)-hydroxy-5,8,14-cis-10-trans-eicosatetraenoic acid, 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid as well as the internal standard prostaglandin B1 in <10 min employing a separation voltage of 17.5 kV at a temperature of 23 °C. A matrix peak from solid-phase extraction sample workup co-migrated with 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid affecting peak integration. The addition of 5 % (v/v) 2-propanol to the microemulsion resulted in the separation of this eicosatetraenoic acid and the matrix components at the expense of analysis time and peak resolution between the diastereomers 6-trans-leukotriene B4 and 6-trans-12-epi-leukotriene B4. In summary, the MEEKC method appeared to be especially suitable for the more polar arachidonic acid metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Peters-Golden M, Henderson WR (2007) Leukotrienes. N Engl J Med 357:1841–1854. doi:10.1056/NEJMra071371

    Article  CAS  Google Scholar 

  2. Werz O, Steinhilber D (2006) Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 112:701–718. doi:10.1016/j.pharmthera.2006.05.009

    Article  CAS  Google Scholar 

  3. Rådmark O, Werz O, Steinhilber D, Samuelsson B (2007) 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 32:332–341. doi:10.1016/j.tibs.2007.06.002

    Article  Google Scholar 

  4. Muller M, Sorrell TC (1992) Leukotriene B4 omega-oxidation by human polymorphonuclear leukocytes is inhibited by pyocyanin, a phenazine derivative produced by Pseudomonas aeruginosa. Infect Immun 60:2536–2540

    CAS  Google Scholar 

  5. Skoog MT, Nichols JS, Harrison BL, Wiseman JS (1986) Glutathione peroxidase is neither required nor kinetically competent for conversion of 5-HPETE to 5-HETE in rat PMN lysates. Prostaglandins 31:577–593. doi:10.1016/0090-6980(86)90118-8

    CAS  Google Scholar 

  6. Fruteau de Laclos B, Braquet P, Borgeat P (1984) Characteristics of leukotriene (LT) and hydroxy eicosatetraenoic acid (HETE) synthesis in human leukocytes in vitro: effect of arachidonic acid concentration. Prostaglandins Leukot Med 13:47–52. doi:10.1016/0262-1746(84)90101-x

    Article  CAS  Google Scholar 

  7. Miller DK, Sadowski S, DeSousa D, Maycock AL, Lombardo DL, Young RN, Hayes EC (1985) Development of enzyme-linked immunosorbent assays for measurement of leukotrienes and prostaglandins. J Immunol Methods 81:169–185. doi:10.1016/0022-1759(85)90202-9

    Article  CAS  Google Scholar 

  8. Kiss L, Bieniek E, Weissmann N, Schütte H, Sibelius U, Günther A, Bier J, Mayer K, Henneking K, Padberg W, Grimm H, Seeger W, Grimminger F (1998) Simultaneous analysis of 4- and 5-series lipoxygenase and cytochrome P450 products from different biological sources by reversed-phase high-performance liquid chromatographic technique. Anal Biochem 261:16–28. doi:10.1006/abio.1998.2674

    Article  CAS  Google Scholar 

  9. Powell WS (1987) Precolumn extraction and reversed-phase high-pressure liquid chromatography of prostaglandins and leukotrienes. Anal Biochem 164:117–131. doi:10.1016/0003-2697(87)90375-7

    Article  CAS  Google Scholar 

  10. Steinhilber D, Herrmann T, Roth HJ (1989) Separation of lipoxins and leukotrienes from human granulocytes by high-performance liquid chromatography with a Radial-Pak cartridge after extraction with an octadecyl reversed-phase column. J Chromatogr B 493:361–366. doi:10.1016/s0378-4347(00)82742-5

    Article  CAS  Google Scholar 

  11. Frohberg P, Drutkowski G, Wobst I (2006) Monitoring eicosanoid biosynthesis via lipoxygenase and cyclooxygenase pathways in human whole blood by single HPLC run. J Pharm Biomed Anal 41:1317–1324. doi:10.1016/j.jpba.2006.02.046

    Article  CAS  Google Scholar 

  12. Panchaud A, Avois L, Roulet M, Pilet M, Hug C, Saugy M, Decosterd LA (2005) A validated liquid chromatography–mass spectrometry method for the determination of leukotrienes B4 and B5 produced by stimulated human polymorphonuclear leukocytes. Anal Biochem 341:58–68. doi:10.1016/j.ab.2005.02.030

    Article  CAS  Google Scholar 

  13. Chappell GP, Xiao X, Pica-Mendez A, Varnell T, Green S, Tanaka WK, Laterza O (2011) Quantitative measurement of cysteinyl leukotrienes and leukotriene B4 in human sputum using ultra high pressure liquid chromatography–tandem mass spectrometry. J Chromatogr B 879:277–284. doi:10.1016/j.jchromb.2010.12.014

    Article  CAS  Google Scholar 

  14. Balazy M, Murphy RC (1986) Determination of sulfidopeptide leukotrienes in biological fluids by gas chromatography mass spectrometry. Anal Chem 58:1098–1101. doi:10.1021/ac00297a026

    Article  CAS  Google Scholar 

  15. Mathews WR, Bundy GL, Wynalda MA, Guido DM, Schneider WP, Fitzpatrick FA (1988) Development and comparative evaluation of radioimmunoassay and gas chromatographic/mass spectrometric procedures for determination of leukotriene B4. Anal Chem 60:349–353. doi:10.1021/ac00155a016

    Article  CAS  Google Scholar 

  16. Abromeit H, Schaible AM, Werz O, Scriba GKE (2012) Chemometrics-guided development of a cyclodextrin-modified micellar electrokinetic chromatography method with head-column field amplified sample stacking for the analysis of 5-lipoxygenase metabolites. J Chromatogr A 1267:217–223. doi:10.1016/j.chroma.2012.08.001

    Article  CAS  Google Scholar 

  17. Zhang C-X, Thormann W (1998) Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2. Optimization with a preinjection plug and application to micellar electrokinetic chromatography. Anal Chem 70:540–548. doi:10.1021/ac9707085

    Article  CAS  Google Scholar 

  18. Watarai H (1997) Microemulsions in separation sciences. J Chromatogr A 780:93–102. doi:10.1016/S0021-9673(97)00444-5

    Google Scholar 

  19. Huie CW (2006) Recent applications of microemulsion electrokinetic chromatography. Electrophoresis 27:60–75. doi:10.1002/elps.200500518

    Article  CAS  Google Scholar 

  20. Terabe S, Matsubara N, Ishihama Y, Okada Y (1992) Microemulsion electrokinetic chromatography: comparison with micellar electrokinetic chromatography. J Chromatogr A 608:23–29. doi:10.1016/0021-9673(92)87102-E

    Article  CAS  Google Scholar 

  21. Yang X, Xia Y, Tao C, Liao Y, Zuo Y, Liu H (2007) A comparative study of micellar and microemulsion EKC for the analysis of benzoylurea insecticides and their analogs. Electrophoresis 28:1744–1751. doi:10.1002/elps.200600507

    Article  CAS  Google Scholar 

  22. Ryan R, McEvoy E, Sheila D, Power J, Altria K (2011) Recent developments in the methodology and application of MEEKC. Electrophoresis 32:184–201. doi:10.1002/elps.201000372

    Article  CAS  Google Scholar 

  23. Ortner K, Buchberger W, Himmelsbach M (2009) Capillary electrokinetic chromatography of insulin and related synthetic analogues. J Chromatogr A 1216:2953–2957. doi:10.1016/j.chroma.2008.11.008

    Article  CAS  Google Scholar 

  24. Yu L, Chu K, Ye H, Liu X, Xu X, Chen G (2012) Recent advances in microemulsion electrokinetic chromatography. Trends Anal Chem 34:140–151. doi:10.1016/j.trac.2011.11.003

    Article  CAS  Google Scholar 

  25. Wen T, Zhao X, Luo G, Wang J, Wang Y, Yao B, Zhao J, Zhu J, Yu Z (2007) Comparison of microemulsion electrokinetic chromatography and solvent modified micellar electrokinetic chromatography on rapid separation of heroin, amphetamine and their basic impurities. Talanta 71:854–860. doi:10.1016/j.talanta.2006.05.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard K. E. Scriba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abromeit, H., Werz, O. & Scriba, G.K.E. Separation of 5-Lipoxygenase Metabolites Using Cyclodextrin-Modified Microemulsion Electrokinetic Chromatography and Head Column Field-Amplified Sample Stacking. Chromatographia 76, 1187–1192 (2013). https://doi.org/10.1007/s10337-013-2517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2517-4

Keywords

Navigation